Institut für Arbeitsschutz der

3 Details of the device under test and the testing procedure

Record/procedure No:		Partial testing
Form of testing:	Cquipment	
Applicant:		

Manufacturer:

Device under test:
Type:
Year of manufacture:
Serial No/product No:

Testing performed on (date):
At (company):

Testing performed by:

Also present:

Testing performed against: IEC 60204-1 2016 (Sub-)clause:	Electrical equipment of machines	§	$\underset{\sim}{\text { ¢ }}$	2	

4 Physical ambient and operating conditions

4.1 Electromagnetic compatibility (EMC)

4.4.2 Refer also to IEC 61000-6-1 IEC 61000-6-2	1. The incorporated electrical devices and components are suitable for EMC environments IEC 61000-6-3 IEC 61000-6-4		\square		
4.4.2	2.The electrical installation and wiring are consistent with the instructions provided by the manufacturer of the equipment	\square			

4.2 Ambient air temperature

4.4 Altitude

| 4.4 .5 | Clearance in air and creepage distances designed for use at
 altitudes of up to 1000 m | \square | \square | \square |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |

4.5 Contaminants
4.4.6
Degree of protection against contact adequate for the ambient conditions

4.6 Ionizing and non-ionizing radiation

4.4 .7	Additional measures against radiation if necessary	\square	\square	
4.7	Vibration, shock and bump		\square	
4.4 .8		Additional measures against undesirable effects if necessary	\square	\square

5 Result of testing - testing checklists

5.1 Marking of the control equipment Markings

16.4	3. Present On the machine rating plate On/in the compartment	\square \square \square	\square \square \square	
16.4	4. Marking legible and permanent, with the following information:			
16.4	5. Manufacturer/supplier			
16.4	6. Type designation or model			
16.4	7. Production No/Serial No.			
16.4	8. Rated voltage, number of line conductors, frequency			
16.4	9. Full-load current for each incoming supply			
16.4	10.Number of the main documentation			
Refer also to IEC 62023				
16.4	11.Certification mark or other required marking			

5.2 Incoming supplies/terminals for the incoming supply

Testing performed against: IEC 60204-1 2016 (Sub-)clause:	Electrical equipment of machines	Z	$\underset{\sim}{\underset{\sim}{\sim}}$	2	

Testing performed against: IEC 60204-1 2016 (Sub-)clause:	Electrical equipment of machines	§	$\underset{\sim}{\text { ¢ }}$	2	

5.3.5	5. Control circuits for interlocks						
6.2.2b	6. Protection against accidental contact (shrouding): \geq IP2X or IPXXB and warning sign for excepted circuits		$\\|$				
5.3.5	7. Circuits with their own disconnecting device (R)						
$\begin{aligned} & 5.3 .5 \\ & (13.2 .4) \end{aligned}$	8. Warning label(s) Separation from other circuits Identification by colour (recommended: orange) in the case of interlock circuits supplied separately		\square				
5.3.5	9. Statement in the maintenance manual drawing attention to circuits that are not switched off						
$\begin{aligned} & \text { 5.3.5 } \\ & \text { 16.2.1 } \end{aligned}$	10.Warning label on supply disconnecting device						
7.2.8	11.Overcurrent protection provided for circuits that are not switched off (excepted circuits)						
7.2.8	12.No special overcurrent protective device for the supply conductors Conditional upon: - Current-carrying capacity sufficient for the load, and - Supply conductor not longer than 3 m , and - Conductors protected against external influences by enclosure, or - Conductors protected against external influences by ducts			\square			

5.3.2 Supply disconnecting device/switching capacity

$(\mathrm{R})=$ Recommendation

Testing performed against: $\text { IEC 60204-1 } 2016$ (Sub-)clause:	Electrical equipment of machines	¿	$\stackrel{\sim}{\Perp}$	\%	匕 U U $\mathbf{\square}$

5.3.3	4. Means to permit locking in the OFF position					
5.3.3	5. Marked I (On)					
5.3.3	6. Marked O (Off)					
5.3.3	7. Only for two switch positions (On/Off)					
5.3.4	8. Operating means external to the enclosure					
5.3.4	9. Operating means easily accessible at a height of between 0.6 m and 1.7 m (max. 1.9 m)					,
5.3.4	10.When the external operating means is not intended for emergency operations: - Colouring grey or black - Door that can be readily opened and is marked appropriately: or \llcorner \lrcorner Circuit-breaker with disconnector properties					
	Supply terminals of main switch:					
6.2.2b	11.Protected against contact (IP2X or IPXXB)					
6.2.2b	12. Warning sign on terminals					
5.3.1	13. Where two main switches are present, protective interlocks are present (where the situation is hazardous)	\square				,

Testing performed against: IEC 60204-1 2016 (Sub-)clause:	Electrical equipment of machines	Z	$\underset{\sim}{\underset{\sim}{\sim}}$	2	

5.3.3 Supply disconnecting device in the form of an appliance coupler

| 5.3 .3 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 13.4 .5 |\quad| Appliance coupler with adequate breaking capacity or additional |
| :--- |
| switching device with adequate breaking capacity |

5.4 Protection against electric shock

5.4.1 Basic protection

6.2.2	1. Enclosures Compartment 1 \qquad Compartment 2 \qquad Compartment 3 \qquad Refer to the questions in Section 5.5, "Compartments"					
6.2.3	2. The insulation of live parts cannot be removed without being destroyed Affected parts of the installation: \qquad \qquad					
6.2.4	3. Discharge of residual voltages, see Section 5.8, "Further requirements for electrical equipment in the compartment"					
6.2.5 6.2.6 Refer also to IEC $60364-4-41$	4. Protection by barriers, placing out of reach or obstacles on affected parts of systems: \qquad \qquad		\square			

[^0]

5.4.2 Fault protection

5.4.3 Protection by PELV against direct and indirect contact

6.4	1. Affected parts of the installation (circuits). \qquad \qquad The following requirements of the clause are met					
6.4.1.a)	2. Max. rated voltage $25 \mathrm{~V} \mathrm{AC} / 60 \mathrm{~V} \mathrm{DC}$ in dry rooms without large-area contact of live parts with the human body					
6.4.1.a)	3. Max. rated voltage $6 \mathrm{~V} \mathrm{AC/15} \mathrm{~V} \mathrm{DC} \mathrm{in} \mathrm{all} \mathrm{other} \mathrm{cases}$					
6.4.1.b)	4. One side of the circuit is connected to the protective bonding circuit					
6.4.1.c) Refer also to IEC 61558-1 IEC 61558-2-6	5. Electrical separation satisfies that required between the primary and secondary windings of a safety isolating transformer			\square		\square

Testing performed against: IEC 60204-1 2016 (Sub-)clause:	Electrical equipment of machines	Z	$\underset{\sim}{\underset{\sim}{\sim}}$	2	

Testing performed against: IEC 60204-1 2016		Electrical equipment of machines	\mathbb{Z}	$\stackrel{\oplus}{\underset{\sim}{\boldsymbol{x}}}$	2		\varangle	$\stackrel{\oplus}{\underset{\sim}{\boldsymbol{\omega}}}$	2		$\$$	$\underset{\sim}{\underset{\sim}{\sim}}$	2	
(Sub-) clause	Requirement		Compartment 1:				Compartment 2:				Compartment 3:			

5.5	Compartments (protection by enclosure)												
16.2.1	1. Compartment	\square	\square	\square		\square	\square	\square		\square	\square	\square	
	ecognizable		\square	\square			\square	\square			\square	\square	
	Not cleary recognizable	\square	\square			\square	\square			\square	\square		
	Warning sign present 4 (black on yellow triangle)	\square	\square		\square	\square	\square		\square	\square	\square		\square
11.2.2	$\begin{aligned} & \text { 2. Compartment contains no } \\ & \text { equipment (incluludig solonoid } \\ & \text { valves other than electrical } \\ & \text { equipment } \end{aligned}$	\square											
5.5.1 Doors/lids													
6.2.2a	1. With locking closure		\square				\square				\square		
6.2.2a	2. With screw closure		\square				\square				\square		
6.2.2a	3. Can be opened only by means of a key or too	\square											
6.2.2b	4. Where opening is possible without a key or tool, only ollowing disconnection of the live parts from the system device)	\square											
	5. Can be opened without a key or tool only when all live parts finger IP 2X or IP XXB)	\square											
11.4	6. Capive fasteners/screws	\square											
11.4	7. Width of door/lid $<0.9 \mathrm{~m}$ opening angle at least $95^{\circ}(\mathrm{R})$	\square											
11.4	8. Vertical hinges on doors preferably removable (R)	\square											
11.2.1	9. No devices on doorsslids	\square											

Testing performed against： IEC 60204－1 2016		Electrical equipment of machines	\mathbb{Z}	$\underset{\sim}{\underset{\sim}{\Perp}}$	$\mathbf{0}$	$\begin{aligned} & \frac{-匕}{U} \\ & \stackrel{1}{4} \end{aligned}$	\varangle	$\underset{\underset{\sim}{\infty}}{\infty}$	2	$\begin{aligned} & \underline{⿺ 𠃊} \\ & \underline{U} \\ & \underline{u} \end{aligned}$	$\$$	$\underset{\sim}{\underset{\sim}{u}}$	2	
（Sub－） clause	Requirement		Compartment 1：				Compartment 2：				Compartment 3：			

8．2．3	10．On doors and lids on which electrical equipment is mounted：moving protective conductor connections of adequate cross－sectional area，or construction elements with low electrical resistance	\square											
11.4	11．Joints and gaskets fitted permanently and securely	\square	\square	\square	\square	\square		Γ		\square	\square	\square	\square
5．5．2	Degrees of protection												
6．2．1 Refer also to IEC 60529	1．Minimum degree of protection IP2X（12 mm）；for upper， readily accessible lids IP4X （ 1 mm ）or IPXXD	\square											
11.3	2．Ventilated enclosures（e．g． containing only motor starter resistors）： Minimum degree of protection IP10	\square	\square		\square	\square			\square		\square	\square	\square
11.3	3．Ventilated enclosures（other equipment） Minimum degree of protection IP32	\square	\square	\square	\square	\square	\square		\square	\square	\square	\square	\square
11.3	4．Enclosures for general use exhibit an appropriate degree of protection（IP32，IP43， IP54）	\square		\square	\square	Γ	\square						
11.3	5．Enclosures cleaned by low－ pressure water jets：IP55	\square											
11.3	6．Enclosures providing protection against fine dust： IP65	\square											
11.4	7．Enclosures containing slip－ ring assemblies：IP2X	\square											
11.4	8．Penetration of openings by water，dust，oil is prevented， e．g．on －Cable access －Fixing holes －Base apertures（foundation） －Other parts of the machine	\square		\square	\square	\square	\square		\square	\square	\square	Γ	\square
$\begin{aligned} & \text { 4.4.6 } \\ & \text { 4.4.7 } \end{aligned}$	9．Suitability where exposed to acids，corrosive gases，salt， radiation	\square											

[^1]- Electrical equipment -

Testing performed against: IEC 60204-1 2016		Electrical equipment of machines	$\overleftrightarrow{\Sigma}$	$\underset{\underset{\sim}{\dddot{M}}}{ }$	o	$\begin{aligned} & \frac{-}{\bar{O}} \\ & \frac{\bar{U}}{山} \end{aligned}$	$\mathbb{\Sigma}$	$\underset{\sim}{\underset{\sim}{x}}$	2	$\begin{aligned} & \stackrel{-}{U} \\ & \frac{U}{u} \\ & \underset{\Delta}{\square} \end{aligned}$	\lesssim	$\stackrel{\mathscr{\sim}}{\underset{\sim}{\infty}}$	$\underline{2}$	
(Sub-) clause	Requirement		Compartment 1:1				Compartment 2:				Compartment 3:			

5.5 .3	Accessibility												
11.2.1	1. Correct mounting height and location of the terminals and device connections (> 0.2 m above servicing level) (R)	\square											
11.2.1	2. Correct mounting height for devices requiring maintenance or adjustment ($0.4 \mathrm{~m}-2 \mathrm{~m}$)	\square											
11.2.1	3. Ease of access to the switchgear for operation and maintenance from the front	\square											
11.2.1	4. Ease of identification of the devices (without moving the wiring) and facility of removal	\square		\square	\square								
11.2.1	5. Plug-in devices	\square	\square	\square									\square
11.2.1	6. Plug/socket combinations permit unobstructed access	\square		\square	\square	\square							
11.2.1	7. Testing point present	\square											
5.5.4	Electric shock protection												
6.2.2	1. Where located in the vicinity of live parts, control elements for adjusting/resetting desired functions satisfy IP2X or IPXXB	\square											
6.2.2	- On screw-in fuse links	\square	\square	\square	\square	\square	\square		\square			\square	\square
6.2.2	- On timer elements	\square			\square	\square							
6.2.2	- On overcurrent releases	\square											
6.2.2	2. Live components on the inside of doors satisfy IP1X or IPXXA (50 mm sphere)	\square											

Testing performed against: IEC 60204-1 2016		Electrical equipment of machines	\mathbb{Z}	$\underset{\sim}{\underset{\sim}{\dddot{~}}}$	2	든 $\stackrel{1}{U 1}$	$\mathbb{\Sigma}$	$\underset{\sim}{\text { ¢ }}$	2		\mathbb{Z}	$\underset{\sim}{\underset{\sim}{u}}$	2	든
(Sub-) clause	Requirement		Compartment 1: 1				Compartment 2:				Compartment 3:			

5.6 Wiring within the compartments

13.1.1	1. Means of connection present for all conductors	\square	\square	\square		\square	\square		L	\square	\square	\square	\square
13.1.1	2. Terminals suitable for the type and cross-sectional area of the conductors	\square											
13.5.1	3. Conductors laid in suitable ducts	\square											
13.5.1	4. Ducts not over-occupied	\square											
13.3	5. Conductors not running in ducts are adequately supported	\square		\square	\square	\square							
13.3	6. Modification of the wiring possible from the front, or from the rear by access doors or swingout panels (R)	\square	\square	\square	$\square \mid$	\square	\square \square	\square	\square	\square	\square	\square	\square
13.3	7. Terminal blocks or plug/socket combinations provided for control wiring extending beyond the enclosure; (cables of power and measuring circuits may be connected directly)	\square											
13.1.1 Refers also to IEC 61666	8. Terminals marked clearly according to the plans	\square	\square		\square	\square	\square	\square		\square	\square	\square	\square
13.1.2	9. Cables and conductors of sufficient length for connection and disconnection (applies in particular to protective conductors)	\square		\square	\square	\square							

$(R)=$ Recommendation

- Electrical equipment -

Testing performed against: IEC 60204-1 2016		Electrical equipment of machines	\mathbb{Z}	$\underset{\sim}{\underset{\sim}{\dddot{~}}}$	2	든 $\stackrel{1}{U 1}$	$\mathbb{\Sigma}$	$\stackrel{\sim}{\sim}$	2		\mathbb{K}	$\underset{\sim}{\underset{\sim}{u}}$	2	든
(Sub-) clause	Requirement		Compartment 1: 1				Compartment 2:				Compartment 3:			

13.1.2	10. Protective conductors placed close to the associated line conductors (R)	\square											
12.2	11.Minimum cross-sectional areas for wiring within enclosures:	\square											
	- Power circuits, connections $0.75 \mathrm{~mm}^{2}$	\square											
	- Control circuits: 0.2 mm	\square											
	- Data communication systems: $0.08 \mathrm{~mm}^{2}$	\square											
13.1.3	12. Control circuit conductors operating at different voltages laid together (e.g. in a cable duct):	\square											
	- All insulated for the highest voltage to which any of the conductors can be subjected, or	\square											
	$\begin{aligned} & \text { - Separated by suitable } \\ & \text { barriers } \end{aligned}$	\square											
13.1.1	13. Soldered connections only on terminals suitable for soldering	\square											
$\begin{array}{\|l} \hline \text { Table D. } 4 \\ \text { Refer also to } \\ \text { IEC } 60228 \end{array}$	14. Solid (single-strand) conductors only for fixed, vibration-free installation	\square											
13.1.2	15. Cables and conductors adequately supported (no mechanical stresses at the terminations)	\square											
13.1.2	16. All conductors run from terminal to terminal (without splices or joints)	\square											
13.1.1	17. Connector sleeves on terminations of stranded conductors	\square											
13.1.1	18. Terminals not obscured by wiring	\square											
13.4.7	19.Spare conductors connected to spare terminals or isolated	\square	\square	\square	\square			\square	\square	\square	\square	\square	\square

$(R)=$ Recommendation

- Electrical equipment -

5.6.1 Connections to equipment on doors

$\begin{aligned} & \hline 13.3 \\ & 12.2 ; 12.6 \end{aligned}$	1. With flexible conductors	\square											
$\begin{array}{\|l\|} \hline 13.3 \\ 13.5 .1 \end{array}$	2. Protection against damage (tubing, spiral wrap, etc.)	\square											
13.3	3. Strain relief on the fixed and movable parts	\square											
5.6.2	Identification of conductors												
$\begin{array}{\|l\|} \hline 8.2 .2 \\ 13.2 .2 \end{array}$	1. Protective conductor: GREEN-YELLOW over the entire length of the conductor, or Clearly distinguishable by shape, location or marking	\square	\square	\square		\square	\square			\square	\square	\square	\square
			\square	\square	\square				\square		\square		\square
			\square	\square	\square		\square	\square	\square		\square	\square	\square
13.2.3	2. Neutral conductor: LIGHT BLUE (R)	\square											
$\begin{aligned} & 13.2 .4 \\ & \text { Refer also to } \\ & \text { IEC } 60757 \end{aligned}$	3. Identification of conductors by colour		\square				\square				\square		

Testing performed against: IEC 60204-1 2016		Electrical equipment of machines	\mathbb{Z}	$\stackrel{\sim}{\sim}$	2		\varangle	$\stackrel{\substack{\text { ¢ }}}{ }$	2		$\$$	$\stackrel{\sim}{\sim}$	2	
(Sub-) clause	Requirement		Compartment 1:1				Compartment 2:				Compartment 3:			

13.2.4	4. Power circuits: BLACK (R)	\square					
13.2.4	5. Control circuits (DC): BLUE (R)	\square					
13.2.4	6. Control circuits (AC): RED (R)	\square			\square		
13.2.4	7. Exempted circuits to IEC 60204-1, Sub-clause 5.3.5: ORANGE (R)	\square	\square	\square	\square	\square \square	\square
13.2.4	8. No use of GREEN or YELLOW where a possibility of confusion exists with the GREEN-YELLOW bicolour combination	\square		\square	\square	\square	\square
13.2.3	9. Where colour is the sole means of identification, LIGHT BLUE is used solely for neutral conductors	\square					
$\begin{aligned} & \text { 13.2.1 } \\ & \text { Refer also to } \end{aligned}$ $\text { IEC } 62491$	10. Conductors identifiable at each termination in accordance with the technical documentation, for example by: - Colour, - Number, - Alphanumeric	\square		\square	\square	\square	\square

Testing performed against: IEC 60204-1 2016		Electrical equipment of machines	\leqslant	$\underset{\sim}{\underset{\sim}{u}}$	2		\varangle	$\stackrel{\substack{\text { ¢ }}}{ }$	2		\mathbb{K}	$\stackrel{\sim}{\sim}$	2	
(Sub-) clause	Requirement		Compartment 1:				Compartment 2:				Compartment 3:			

| Testing performed
 against:
 IEC 60204-1 2016 | Electrical equipment of
 machines | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

8.2.4	5. Protective conductor connecting points marked		\square	\square			\square	\square			\square	\square	
	to EN-60417-5019		\square	\square			\square	\square			\square		
	- Letters PE		\square	\square			\square	\square			\square	\square	
	- GREEN-YELLOW bicolour combination		\square	\square			\square	\square			\square	\square	
8.2.3	6. Current-carrying capacity of connection and bonding points of the protective bonding circuit not impaired by mechanical, chemical or electrochemical influences	\square											
8.2.6	7. Protective conductor connecting points not used for additional fixing purposes (such as supporting rails)	\square											
8.2.3	8. Flexible or rigid cable ducts and metal cable sheathing are not used as protective conductors; they are however connected to the protective bonding circuit	\square											
$\begin{array}{\|l\|} \hline 8.2 .3 \\ 13.4 .5 \end{array}$	9. Where plug/socket combinations are employed, the protective bonding circuit is interrupted by a first make last break contact	\square											
8.2.3	10. The protective bonding circuit contains neither switchgear nor overcurrent protective devices	\square											
5.2	11. The protective conductor is among the conductors supplying the equipment (line conductors and protective conductor share common sheathing)	\square											

Testing performed against: IEC 60204-1 2016		Electrical equipment of machines	\leqslant	$\underset{\sim}{\underset{\sim}{u}}$	2		\varangle	$\stackrel{\substack{\text { ¢ }}}{ }$	2		\mathbb{K}	$\stackrel{\sim}{\sim}$	2	
(Sub-) clause	Requirement		Compartment 1:				Compartment 2:				Compartment 3:			

8.2.3	12. When a part is removed (for example during routine maintenance), the protective bonding circuit is not interrupted for the remaining parts	\square											
8.2.6	13. Where electrical equipment has an earth leakage current of $>10 \mathrm{~mA}$ in the incoming supply, one or more of the following conditions are met:	\square											
	- Protective conductor laid completely within the enclosures or otherwise protected against mechanical damage	\square	\square	\square		\square	\square	\square		\square	\square	\square	
	- Cross-sectional area of the protective conductor at least $10 \mathrm{~mm}^{2} \mathrm{Cu}$ or $16 \mathrm{~mm}^{2} \mathrm{Al}$	\square	\square	\square		\square	\square	\square		\square	\square	\square	
	Where the cross-sectional area is lower than these values, provision of a second protective conductor	\square	\square	\square		\square	\square	\square		\square	\square	\square	
	- Automatic disconnection of the supply should continuity of the protective conductor be lost	\square	\square	\square		\square	\square	\square		\square	\square	\square	
	- On plug/socket combinations: industrial connector to IEC 60309, minimum cross-sectional area of the protective conductor $2.5 \mathrm{~mm}^{2}$	\square	\square	\square		\square	\square	\square		\square	\square	\square	
	- Statement in the instructions for installation	\square	\square	\square		\square	\square	\square		\square	\square	\square	
	- Warning label	\square	\square	\square		\square	\square	\square		\square	\square	\square	
8.3	14. Electrical equipment with a high leakage current is connected to a dedicated supply transformer with separate windings (R)	\square											

Testing performed against: IEC 60204-1 2016 (Sub-)clause:	Electrical equipment of machines	$\overleftrightarrow{\text { Z }}$	$\stackrel{\text { ¢ }}{ \pm}$	O	

Testing performed against: IEC 60204-1 2016 (Sub-)clause:	Electrical equipment of machines	\mathbb{Z}	$\stackrel{\sim}{\underset{\sim}{\sim}}$	2	

5.9 Control circuits

5.9.1 With transformer 1

[^2]| Testing performed against:
 IEC 60204-1 2016
 (Sub-)clause: | Electrical equipment of machines | \mathbb{Z} | $\stackrel{\sim}{\text { ¢ }}$ | 2 | |
| :---: | :---: | :---: | :---: | :---: | :---: |

9.1.2	7. Secondary voltage does not exceed $277 \mathrm{~V}(60 \mathrm{~Hz})$ 8. Secondary voltage does not exceed $230 \mathrm{~V}(50 \mathrm{~Hz})$ 9. Secondary voltage does not exceed 220 V (DC control circuit)					
9.4.3.1	- Control circuit according to method a) or c)	Transformer 1				
9.4.3.1.2	10. Earthed on the control transformer (also applicable to ELV and DC) (separable green/yellow connection to the protective bonding circuit)					
17.2f	11. Connection to the protective bonding circuit shown on the circuit diagram					
9.4.3.1.2	12. One side of the operating coils directly on the earthed conductor, switching contacts only on the non-earthed side					
	13. Other method, e.g. non-earthed with insulation monitoring					
$\begin{aligned} & \hline 9.1 .3 \\ & 7.2 .4 \\ & 7.2 .10 \end{aligned}$	14. Overcurrent/short-circuit protection provided On the secondary side 1 x \qquad A, Marking according to circuit diagram. \qquad On the primary side. \qquad x . \qquad A, Marking according to circuit diagram. \qquad					
7.2.10	15. Short-circuit protection of the contacts in the control circuit assured					
7.2.9	16. Overcurrent protection provided by electronic equipment with current limiting					

5.9.2 With transformer 2

[^3]| Testing performed against:
 IEC 60204-1 2016
 (Sub-)clause: | Electrical equipment of machines | \measuredangle | $\underset{\sim}{\text { ¢ }}$ | \bigcirc | |
| :---: | :---: | :---: | :---: | :---: | :---: |

5.9.3	Non-earthed control circuits (method b)					
9.4.3.1.3	1. 2-pole control switches operating on both conductors					
	2. Equipment present for automatic disconnection in the event of an insulation fault					
5.9.4	ormer with earthed centre-tap winding (method c)					
9.4.3.1.4	1. 2-pole control switches operating on both conductors					
9.4.3.1.4	2. Centre tap connected to protective bonding circuit					
9.4.3.1.4	3. Both conductors are interrupted by the overcurrent protective device					\square

5.9.5 Without Transformator (method d)

9.1.1	1. Single motor starter, maximum of 2 control devices					
$\begin{aligned} & \hline 9.1 .3 \\ & 7.2 .4 \\ & \text { 7.2.10 } \end{aligned}$	2. Overcurrent/short-circuit protection provided and protection of the contacts assured 1 x \qquad A, (1 line conductor) Marking according to circuit diagram \qquad A, (2 line conductor) Marking according to circuit diagram					
9.4.3.1.5	3. Two-pole control switch where connection is between two line conductors or between a line conductor and neutral, when phase reversal (e.g. with Schuko-type plug) is possible (for start and stop function and possible hazard)					
9.4.3.1.5	4. Where connection is made to a non-earthed supply system or IT system, a device must be provided that automatically interrupts the circuit in the event of an earth fault.					
5.9.6	DC control circuits					
9.1.1	1. Where DC control circuits are connected to the protective bonding circuit, they are supplied from a separate winding of the AC control circuit transformer (or a separate transformer for DC supply)					
5.9.7	Access to switchgear					
11.5	1. Doors in gangways for access to electrical operating areas; - At least 0.7 m wide and 2 m high - Opening outwards - Can be opened from inside without keys or tools (e.g. by panic bolts)					\square

Testing performed against:
IEC 60204-1 2016
(Sub-)clause:
元

Electrical equipment of machines

5.10 Control functions / electronic equipment

5.10.1 Control equipment

5.11 Stop function, Actions in an emergency

5.11.1 Stop function

Testing performed against: IEC 60204-1 2016 (Sub-)clause:	Electrical equipment of machines	$\overleftrightarrow{\Sigma}$	$\stackrel{\oplus}{\sim}$	ㅇ	

5.11.3 Equipment for EMERGENCY STOP and EMERGENCY SWITCHING OFF

Testing performed against: IEC 60204-1 2016 (Sub-)clause:	Electrical equipment of machines	$\overleftrightarrow{\text { Z }}$	$\xrightarrow{\text { ¢ }}$	\bigcirc	匕 U L 山

$\begin{array}{\|l\|l\|} \hline 10.7 .2 \\ 10.8 .2 \end{array}$	9. Pull-cord operated switch (secure against breakage, disengagement, etc.)						
9.2.3.4.1	10.Reenergizing possible only following manual resetting of all actuated control elements						
9.2.3.4.1	11.Resetting does not cause starting						
9.2.3.4.2	12.EMERGENCY STOP overrides all other operating modes						
10.7.2	13. Contact members have positive opening operation (IEC 60947-5-5) - manufacturer: \qquad - current (AC15-DC13) \qquad A at \qquad - Max. permissible overcurrent protection according to the manufacturer \qquad A - Level of overcurrent protection present \qquad A						
7.2.9	14.Overcurrent protection of the contacts is assured						
	15.No operational disconnection by means of EMERGENCY STOP/EMERGENCY SWITCHING OFF						
	16.EMERGENCY SWITCHING OFF / EMERGENCY STOP contacts act upon:						
9.2.3.4.3	17.Only electromechanical switching devices employed for EMERGENCY SWITCHING OFF						
10.7.1 DIN EN ISO 13850, 4.3.8	18. Confusion of active and inactive EMERGENCY STOP devices in mobile operator control stations reduced to a minimum by the following means (e.g. instruction for users):						\square

5.12 Control functions

5.12.1 Devices for removal of power for prevention of unexpected start-up

5.4	1. Present					
5.4 Refer also ISO 14118	2. Device with disconnector function (for disassembly of the machine, work on the electrical installation, adjustment and maintenance work) In the form of: \qquad	\qquad				
5.4	3 . Supply disconnecting device (5.3.2)					
5.4	4. Switch-disconnector					
5.4	5. Withdrawable fuse links/withdrawable links in locked electrical operating areas		\square			

Testing performed against: IEC 60204-1 2016 (Sub-)clause:	Electrical equipment of machines	$\overleftrightarrow{\text { Z }}$	$\xrightarrow{\text { ¢ }}$	\bigcirc	匕 U L 山

5.4	6. Devices that do not satisfy the disconnector function (only for brief inspections, adjustments, limited work on the electrical equipment and without electric shock hazard) In the form of:					\square	
	7. Switch, lockable						
	8. Contactor, de-energized via the control circuit						
	9.		$\\|$				
5.12.2	ration - interlocks - monitoring - start						
7.5	1. Interruption and subsequent restoration of power does not lead to a hazardous situation	\square					
$\begin{aligned} & \hline 7.6 \\ & (9.3 .2) \end{aligned}$	2. Overspeed protection with restart lockout present (if necessary)						
7.8	3. When the phase sequence of the supply voltage is incorrect: - A hazardous situation is not possible - Damage to the machine is not possible - Protective measure: \qquad		\square				
9.3.3	4. Operation of auxiliary functions is monitored						
9.3.5	5. No disconnection as a function of time during reverse current braking (risk of reversed direction of rotation)						
9.3.5	6. No start-up when the motor shaft is rotated						
9.3.4	7. Interlock against contrary motion						
9.2.3.1	8. Safety functions/protective measures (interlocks) required for safe operation are present						
9.2.3.1	9. Measures have been taken to prevent commands initiated from different control stations from giving rise to a hazard						
9.2.3.2	10. Startfunktion wird durch relevanten Stromkreis ausgelöst						
9.2.3.2	11. The start of an operation is possible only when the conditions for machine operation (e.g. guarding) are met						
9.2.3.2	12. Where more than one control station is required for initiation of starting:						
	- Each control station has its own separate manual start control device						
	- All start control devices are in the rest position (OFF)						
	- The required conditions for starting are met prior to the start						
	- Simultaneous actuation (where applicable, selectively by means of selector switches)						

Testing performed against: IEC 60204-1 2016 (Sub-)clause:	Electrical equipment of machines	\overleftrightarrow{Z}	$\stackrel{\sim}{\sim}$	O	匕 U L 山

Testing performed against: IEC 60204-1 2016 (Sub-)clause:	Electrical equipment of machines	\$	$\stackrel{\sim}{\sim}$	O	트 U U U

5.12.4 Enabling function

5.12.5 Cableless control system (CCS)

Testing performed against: IEC 60204-1 2016 (Sub-)clause:	Electrical equipment of machines	$\overleftrightarrow{\Sigma}$	$\stackrel{\sim}{\sim}$	2	

9.2.4.2	12.A change in battery voltage does not give rise to a hazardous situation Where battery-powered operator control stations may give rise to hazardous movements: warning in the event of a change in battery voltage (specified limits) Sufficient time available for the machine to be placed in a non-hazardous state					\square
9.2.4.5	13.Selecting a CCS on the machine does not initiate a control command					
9.2.4.8	14.Restarting the CCS does not reset the emergency-stop condition					
9.2.4.8	15.The emergency-stop condition cannot be reset until a hazard is no longer present					
9.2.4.8	16.Fixed reset devices present? (depending upon risk assessment)					
5.12.6	ting modes					
9.2.3.5	1. Several operating modes present					
9.2.3.5	2. Operating mode (in hazardous situations) can be changed by: Selector switch:- Lockable cam switch - Key operated switch, lockable in all positions - Access code \qquad					
9.2.3.5	3. Selected operating mode clearly identifiable					
9.2.3.5	4. Operating mode selector switch does not initiate machine operation; separate action required					
9.2.3.5	5. Relevant safety functions/protective measures are active in all operating modes					

Testing performed against: IEC 60204-1 2016 (Sub-)clause:	Electrical equipment of machines	\$	$\stackrel{\sim}{\sim}$	O	트 U U U

9.3.6	6. Where the safety functions/protective measures must be suspended, the control or operating mode selector simultaneously: - Disables all other operating modes Permits operation only by means of an enabling device - Hold-to-run mode (dead-man's circuit) \square - Enabling circuit - Two-hand control - Portable control unit with emergency switching off \square - Cableless control station - Permits operation of hazardous elements only under reduced risk conditions - Reduced speed $\mathrm{V}=$ \qquad mm / s Type of speed reduction \qquad - Reduced energy - Limitation of the range of movement Any operation of hazardous functions by voluntary or involuntary action on the machine's sensors is prevented \qquad					\square
4.1 Refer also ISO 13849-1	Design of the operating mode selector, form of speed reduction, disabling of the guard (6) - Satisfy the risk assessment					
	Satisfy the requirements for this type of machine (Type C standard (,..")					

Testing performed against: IEC 60204-1 2016 (Sub-)clause:	Electrical equipment of machines	\$	$\stackrel{\sim}{\sim}$	O	트 U U U

5.12.7 Control function in the event of a fault

9.4.1	1. The performance of the control system as determined satisfies the following Performance Level in accordance with ISO 13849-1 (Table 2)/SIL in accordance with IEC 62061:					
9.4.1	2. Determining of the required performance of the control system by means of: - Specified Type C standard Titel.. - Risk assessment to ISO 13849-1 - Risk assessment to IEC 62061 \qquad		\square			
	3. The determined Performance Level (1) satisfies the above requirements (2)					
9.4.1	4. Memory is retained by batteries - If so: does removal or failure of the batteries result in a safe state?					
9.4.1	5. Memory alteration possible only by authorized persons Protection afforded by: Key Access code Tool					

Testing performed against: IEC 60204-1 2016 (Sub-)clause:	Electrical equipment of machines	§	$\xrightarrow{\oplus}$	\bigcirc	ヒ U U U

5.12.8 Measures for risk reduction in the event of a fault

9.4.2.2	1. The measure of proven circuit techniques and components includes - Earthed control circuit - Connection of the control devices in accordance with IEC 60204-1, Sub-clause 9.4.3.1.1 - Stopping by de-energizing - Disconnection of all live conductors in the control circuit - Use of switching devices with direct opening action - Circuit design to reduce the possibility of faults causing undesirable operations - Monitoring by: - Use of mechanically linked contacts (IEC 60947-5-1) - Use of mirror contacts (IEC 60947-4-1)					
9.4.2.3	2. Redundancy					
9.4.2.4	3. Diversity - Use of a combination of normally open and normally closed contacts - Use of control devices of different types in the control circuit - Combination of electromechanical and electronic circuits in redundant configurations - Combination of electrical and non-electrical systems (for example mechanical, hydraulic, pneumatic)					
9.4.2.5	4. Functional test - Performed automatically by the control system, at intervals of: \qquad - Performed manually during inspections or start-up testing, at intervals of:					
	5. Behaviour in the event of a fault is appropriate in consideration of the risk					

5.13 Control and signalling devices

10.1.2	1. Within easy reach (at a height of $\geq 0.6 \mathrm{~m}$)					
10.1.2	2. Can be operated safely					
$\begin{aligned} & 10.1 .1 \\ & 10.6 \end{aligned}$	3. The danger of inadvertent actuation is low, particularly for start functions					
10.1.3 Refer also to IEC 60529	4. Protected against external influences (aggressive liquids, vapours, gases; swarf, particulate matter, foreign objects), e.g. IP 54/IP 55; protection against contact with live parts: IP XXD					
10.1.2	5. Foot-operated control devices can be operated in the normal working position					

$(\mathrm{R})=$ Recommendation

Testing performed against: IEC 60204-1 2016 (Sub-)clause:	Electrical equipment of machines	§	$\xrightarrow{\oplus}$	\bigcirc	ヒ U U U

10.1.1	6. Ergonomic principles have been observed for the location of installation					\square
5.13 .1	Actuator					
10.2.1	1. Red actuator only for EMERGENCY SWITCHING OFF					
10.2.2	2. Clearly marked (e.g. I or 0) (R)					
16.3 Refer also to IEC 60417 and ISO 7000	3. With functional identification (text or pictogram)					
5.13.2 Colour coding of actuators	Colour coding of actuators					
10.2.1	1. Stop/Off: BLACK, GREY, WHITE, RED (R) Not GREEN	\square				
10.2.1	2. Start/On: WHITE, GREY, BLACK, GREEN (R) Not RED					
10.2.1	3. Hold-to-run mode: WHITE, GREY, BLACK (R) Not RED, YELLOW, GREEN					
10.2.1	4. Intervention under abnormal conditions: YELLOW					
10.2.1	5. Mandatory state (e.g. reset): BLUE					
10.2.1	6. Initiation of the normal state: GREEN					
$\begin{array}{\|l\|} \hline 9 \cdot 2.3 .10 \\ 10.2 .1 \end{array}$	7. Control devices alternately initiating stop and motion are used only for functions which do not lead to a hazardous situation Marking: WHITE, GREY, BLACK Not RED, YELLOW, GREEN					
10.2.1	8. Where the same colour is used for example for On/Off (WHITE/GREY,BLACK), unambiguous supplementary identification is provided by structure, shape, position					\square
10.5	9. Rotary control devices (e.g. selector switches, potentiometers) are secured against rotation of the stationary member (friction alone is not sufficient)	$\underline{-}$,		\square
	10.Switch position unambiguously recognizable					

5.13.3 Indicator lights/illuminated pushbuttons

Testing performed against: IEC 60204-1 2016 (Sub-)clause:	Electrical equipment of machines	$\overleftrightarrow{\text { Z }}$	$\xrightarrow{\text { ¢ }}$	\bigcirc	匕 U L 山

$\begin{array}{\|l\|} \hline 10.3 .1 \\ \text { 10.3.2 } \\ \text { table } 4 \end{array}$	2. The following colours are used for the "confirmation" form of information (illumination following action):			\square		ـ
	- WHITE (command or state is confirmed)					
	- BLUE (command or state is confirmed)					
	- GREEN (in special cases)					
10.4	3. White is used for illuminated pushbuttons to which no obvious colour can be assigned	\square				
10.4	4. The colour of emergency switching off actuators remains red regardless of the state of the illumination					
10.3.1 Refer also to IEC 61310-1	5. Indicator lights and displays visible from the operator's normal position					
10.3.1	6. Facility for checking the operability of visual and audible warning devices					
10.3.2	7. Indicating towers on machines have the applicable colours in the following order from the top down: RED, YELLOW, BLUE, GREEN, WHITE			-		,

5.14 Exposed conductive parts of the machine (frame)

Testing performed against: IEC 60204-1 2016 (Sub-)clause:	Electrical equipment of machines	§	$\xrightarrow{\oplus}$	\bigcirc	ヒ U U U

6.2.6 Siehe auch IEC 60364-4-41	5. Protection by placing out of reach or by obstacles			\square		
6.4	6. Basic protection; for indirect contact, protection by the use of PELV \qquad (see Section 4.4, Protection against electric shock)	\qquad				
5.15	Electrical controlgear on the machine					
5.15 .1	Controlgear (position switches, pressure switches, encoders)					
10.1.3 13.4.1 Refer also to IEC 60529	1. Possesses a degree of protection (IP), including cable access, which provides suitable protection against the ingress of contaminants (such as swarf, dust, foreign objects)					
10.1.3	2. Is protected against the influence of aggressive liquids, vapours or gases	7				
10.1.2	3. Is readily accessible for service and maintenance					
10.1.2	4. Is mounted in such a manner that it cannot be damaged by activities on the machine (e.g. material transport)					
6.3.2	5. Possesses total insulation (including cable glands), or					
$\begin{aligned} & 6.3 .3 \\ & 6.4 \end{aligned}$	6. Features protective conductor connections (also applies to extra-low voltage, except PELV) Where this is not the case, affected devices: \qquad \qquad \qquad					
11.2.1	7. The association between plug-in control devices is made clear by distinctive type (e.g. shape, marking, reference designation)					
5.15.2 Position sensors (position switches, proximity switches)						
9.3.2	1. Exceeding of an operating limit (position, end position) is prevented by:					
9.3.2	- A mechanical device					
9.3.2	- Integration of position sensors into the control system					
10.1.4	2. Position sensors are arranged such that they are not damaged in the event of overtravel	\square				

Testing performed against: IEC 60204-1 2016 (Sub-)clause:	Electrical equipment of machines	$\overleftrightarrow{\Sigma}$	$\stackrel{\oplus}{\sim}$	ㅇ	

5.16 Conductors (terminal boxes and plug/socket combinations) outside the compartments

	1. Conductors in the form of light plastic-sheathed cable			\square		\square
13.4 .1	2. Conductors of a circuit are not distributed separately (multi- core cables, cable ducting systems, etc.)	\square	\square	\square		\square

$(\mathrm{R})=$ Recommendation

Testing performed against: IEC 60204-1 2016 (Sub-)clause:	Electrical equipment of machines	¿	$\stackrel{\text { ¢ }}{\underset{\sim}{*}}$	\%	튼 U U

13.4.1	3. Means of introduction, cable glands, etc. do not reduce the degree of protection of the enclosure						
13.4.2	4. Single-core cables and connections in cable ducts/conduits						
12.3	5. Electric strength of the insulation at least $2000 \mathrm{VAC}, 5$ minutes at voltages > 50 V AC or 120 V DC (PELV circuits laid separately: 500 V)						
13.4.2	6. Conductors from devices with dedicated cables are sufficiently short and located or protected such that the risk of damage is minimized						

5.16.1 Light plastic-sheathed cable

13.5	1. Protected against mechanical damage			\square		\square
13.5 .1	2. No sharp edges		\square	\square		\square
13.5 .1	3. Protected against oil, temperature, chemical influences, etc.	\square		\square		\square

5.16.2 Single-core cables in cable ducts/trunking

13.5.1	1. Cable ducts have a suitable degree of protection						
13.5.1	2. No sharp edges, rough surfaces, etc.						
13.5.1	3. No mechanical damage to the duct; secure fixing						
13.5.1	4. Ducts are not over-occupied (R)						
13.5.1	5. Cable conduits are not laid together with oil and water lines, or clear marking (R)						
$\begin{aligned} & \text { 13.5.2 } \\ & 13.5 .4 \end{aligned}$	6. Cable conduits are of suitable type, corrosion-resistant, e.g. galvanized steel						\square

5.16.3 Moveable conductors

13.4.3	1. Are flexible, multistranded, and exhibit high bending fatigue strength					
	2. Are protected by:					
13.4.3	- Flexible metal tubes					
13.4.3	- Plastic tubing					
13.4.3	- Special conductor type					
13.4.3	3. No tensile or tight-radius bending stress (e.g. on cable glands)					
13.4.3	4. Bending radius $\geq 10 \times$ outside diameter					
13.4.3	5. Space of $\geq 25 \mathrm{~mm}$ or fixed barriers between cables subject to movement and moving machine parts					,
13.4.3	6. Flexible metal protective tubing is not used for connections subject to rapid and frequent movement			\square		\square

Testing performed against: IEC 60204-1 2016 (Sub-)clause:	Electrical equipment of machines	$\overleftrightarrow{\text { z }}$	$\stackrel{\oplus}{\Perp}$	\bigcirc	

5.16.4 Connected to the protective bonding circuit

8.2.3	1. Cable ducts/conduits/swivel arms manufactured from metal								
8.2.1	2. Flexible metal tubes including bushing plates								
8.2.1	3. Cable drag chains manufactured from metal								
8.2.1	4. Cable glands manufactured from metal								

5.16.5 Minimum cross-sectional areas (see IEC 60204-1, Table 5)

12.2	1. Outside protecting enclosures					
	- Fixed power circuits, single-core, flexible class 5 or 6: $1.0 \mathrm{~mm}^{2}$					
	- Fixed power circuits, single-core, solid class 1 or stranded class 2: $1.5 \mathrm{~mm}^{2}$			-		\square
	- Fixed power circuits, multi-core: $0.75 \mathrm{~mm}^{2}$					
	- Power circuit subjected to frequent movement, single-core, flexible class 5 or 6: $1.0 \mathrm{~mm}^{2}$					\square
	- Power circuit subjected to frequent movement, multi-core: $0.75 \mathrm{~mm}^{2}$,
	- Control circuits, single-core: $1.0 \mathrm{~mm}^{2}$					
	- Control circuits, multi-core: $0.2 \mathrm{~mm}^{2}$					
	- Control circuits, two-core, not screened: $0.5 \mathrm{~mm}^{2}$					
	- Data communication conductors: $0.08 \mathrm{~mm}^{2}$					
	2. Inside enclosures					
	- Power circuits, connections not moved: $0.75 \mathrm{~mm}^{2}$					
	- Control circuits: $0.2 \mathrm{~mm}^{2}$					
	- Data communication conductors: $0.08 \mathrm{~mm}^{2}$					

[^4]| Testing performed against:
 IEC 60204-1 2016
 (Sub-)clause: | Electrical equipment of machines | $\overleftrightarrow{\text { Z }}$ | $\xrightarrow{\text { ¢ }}$ | \bigcirc | 匕 U L 山 |
| :---: | :---: | :---: | :---: | :---: | :---: |

	3. For aluminium conductors, cross-sectional area of at least $16 \mathrm{~mm}^{2}$			\pm		
	4. Frequently moved conductors, flexible and stranded type					
5.16 .6	nal boxes and other enclosures					
13.5.7	1. Terminals in easily accessible, robust enclosures					
$\begin{aligned} & 13.5 .7 \\ & 13.4 .1 \end{aligned}$	2. Appropriate degree of protection (e.g. IP 44), including cable glands					
13.1.2	3. Sufficient length at cable terminations					
13.1.2	4. Cable glands with strain relief					
13.1.1	5. One terminal for each core, or specially suited terminals for multiple cores					
13.1.2	6. All conductors run from terminal to terminal (without splices or joints within or outside the boxes); plug-and-socket combinations are not regarded as splices or joints for this purpose					\square
13.3	7. All control wiring connected by means of terminals or appliance couplers (direct connection permissible only on power and measuring circuits)	\square				
13.4.4	8. Intermediate terminals for the control of complex machines (e.g. for position sensors/pushbuttons) present, and indicated on the circuit diagram (R)	\square				
8.2.3	9. Metal enclosure, connected with good conductivity to the power bonding circuit					
8.2.4	10.Protective conductor connecting points marked or labelled (green/yellow, PE)	\square				
13.1.1	11.Protective conductor connecting points secured against accidental loosening					
13.1.1	12. Only one protective conductor connection on each terminal					
13.2.2	13.Protective conductor: green/yellow					
13.1 .1	14.Terminals marked					
13.1.1	15.Terminals not obscured by conductors					
13.4.7	16. Spare conductors connected to spare terminals or isolated					
13.1.1	17.Connector sleeves on conductor terminations (exceptions possible); not soldered					
13.1.3	18.Where laid together, conductors are isolated for the max. voltage					
13.4.2	19.Cable glands suitable for the ambient conditions					
13.4.2	20.No tensile stress caused by dead weight of pendant stations					

Testing performed against:
IEC 60204-1 2016
(Sub-)clause:

Electrical equipment of machines

5.17 Conductor wires and slip-ring assemblies

12.7.1	1. Basic protection assured by: - Partial insulation of the live parts - Enclosures or barriers with a degree of protection of at least IP2X or IPXXB					
12.7.1	2. Horizontal top surfaces of barriers or enclosures which are easily accessible possess a degree of protection of at least IP 4X or IP XXD					
12.7.1	3. Protection by placing out of reach in conjunction with switchingoff in an emergency situation					
12.7.1	4. Conductor wires and bars arranged or protected such that: - Where conductor wires and bars are unprotected, contact with conductive parts is not possible - Swinging loads are not able to cause damage					
12.7.2	5. Protective conductors do not carry current					
12.7.2	6. Protective conductors and neutral conductors have separate conductor wires/bars and slip-rings					
12.7.2	7. Continuity of the protective bonding circuit assured by the application of suitable measures (such as duplication of the current collectors, continuity monitoring)					
12.7.3	8. Protective conductor current collectors are not interchangeable with other current collectors					
12.7.4	9. Removable current collectors with switch-disconnector function possess a protective bonding circuit with late-break disconnection and early-make restoration of continuity					
12.7.5	10.Clearances correspond to overvoltage category III (see IEC 60664-1)					
12.7.6	11.Creepage distances: In abnormally dusty, moist or corrosive environments: - Unprotected conductor wires/bars and slip-ring assemblies possess insulators with a creepage distance of at least 60 mm - Enclosed conductor wires, insulated multipole conductor wires and insulated individual conductor bars have creepage distances of at least 30 mm					
	12. Manufacturers' recommendations concerning gradual deterioration in the insulation values are observed					
12.7.7	13.Where the conductor wires or conductor bars are arranged such that they can be divided into sections: The energization of adjacent sections by the current collectors themselves is prevented					
12.7.8	14.Conductor wires/bars and slip-ring assemblies for power circuits are arranged in separate groups to those for control circuits					\square

$(\mathrm{R})=$ Recommendation

Testing performed against: IEC 60204-1 2016 (Sub-)clause:	Electrical equipment of machines	¿	$\stackrel{\oplus}{山 \sim}$	\bigcirc	는 U U

Testing performe against: IEC 60204-1 201	Electrical equipment of machines	\varangle	$\mid \underset{>}{\underset{\sim}{\infty}}$	$\begin{aligned} & \frac{-}{O} \\ & \stackrel{U}{W} \end{aligned}$	$\underset{z}{\mathbb{Z}}$	$\stackrel{\oplus}{\underset{>}{\sim}}$	$\frac{\stackrel{\rightharpoonup}{O}}{\frac{\rightharpoonup}{u}}$	\overleftrightarrow{Z}	$\stackrel{\Im}{\underset{\succ}{\sim}}$	$\stackrel{\stackrel{\vdash}{U}}{\stackrel{\rightharpoonup}{u}}$	$\underset{z}{\mathbb{Z}}$	$\stackrel{\underset{\sim}{\underset{\sim}{e}}}{ }$		$\underset{z}{\mathbb{Z}}$	$\stackrel{\underset{\sim}{\underset{\succ}{\sim}}}{ }$	$\frac{\stackrel{\rightharpoonup}{\mathrm{O}}}{\frac{\stackrel{\rightharpoonup}{U}}{山}}$	$\stackrel{\nwarrow}{z}$	$\stackrel{\sim}{\sim}$	$\stackrel{\stackrel{-}{O}}{\stackrel{\text { U }}{\text { U }}}$
(Sub-)clause	Motor 1				Motor 2			Motor 3			Motor 4			Motor 5			Motor 6		

5.18 Motors

- Electrical equipment -

Testing perform IEC 60204-1 2	Electrical equipment of machines	Z	$\stackrel{\sim}{\sim}$	ㅇ	

Testing perfor IEC 60204-1	Electrical equipment of machines	$\stackrel{\nwarrow}{Z}$	$\stackrel{\text { ¢ }}{\sim}$	\%	$\stackrel{-}{O}$ $\stackrel{\text { U }}{W}$ U
(Sub-)clause:					

Testing perfo IEC 60204-1	Electrical equipment of machines	§	$\stackrel{\sim}{\sim}$	\bigcirc	
(Sub-)clause:					

5.21 Tests

18.1	1. If the extent of verification is not stated by a dedicated product standard, verifications must always include items a), b), c) and h), and may include one or more of the items d) to g): a) Verification that the electrical equipment complies with its technical documentation b) Verification of the continuity of the protective bonding circuits c) Verification of the conditions for protection by automatic disconnection of supply d) Insulation resistance test e) Voltage test f) Protection against residual voltage g) Verification that the relevant requirements of 8.2.6 are met h) Functional tests				

Testing perfor IEC 60204-1	Electrical equipment of machines	$\stackrel{\varangle}{2}$	$\stackrel{\sim}{\sim}$	\bigcirc	$\stackrel{\stackrel{-}{O}}{\stackrel{\text { O}}{\square}}$
(Sub-)clause:					

5.21.1.1 Test 1: Continuity of the protective

18.1 b)	1. Testing is performed for each protective bonding circuit machine			
18.2.2	Measurement of the continuity of the protective bonding circuit: - Between the PE terminal and relevant points in the protective bonding circuit - With a current between at least 0.2 A and 10 A (higher currents are to be preferred, as they increase the accuracy of the test results) - From an electrically separated supply source, e.g. SELV (where possible, not PELV) with a maximum no-load voltage of 24 V AC or DC The resistance measured is within the range expected for the length, cross-sectional area and material of the protective conductor(s) Where a PELV supply is used, earthing may have to be disconnected (for the duration of measurement only)			
	Testing point	Crosssectional area [mm^{2}]	Length [m]	Resistance [Ω
	1. Switchgear cabinet			
	2. Mounting plate			
	3. Switchgear cabinet doors/lids with electrical equipment			
	4. Control panels (including anodized)			
	5. Motors, valves			
	6. Body of the machine			
	7. Appliance couplers, limit switches, foot-operated switches			
	8. Metal hoses, metal cable glands			
	9. Manually operated controls (pendant push-buttons, swivel arms)			
	10. Withdrawable units			
	11. Parts which are removed and held in the hand for the purpose of adjustment/maintenance			
	12. ...			
	13. ..			
	14. Requirements concerning the resistance of the protective conductor are satisfied in all testing points	\square		

Testing performed against: IEC 60204-1 2016	Electrical equipment of machines	§	$\stackrel{\oplus}{\text { ¢ }}$	\bigcirc	$\stackrel{\llcorner }{O}$ $\stackrel{\text { U }}{\sim}$ $\stackrel{\rightharpoonup}{\square}$
(Sub-)clause:					

Testing perfo IEC 60204-1	Electrical equipment of machines	§	$\stackrel{\sim}{\sim}$	\bigcirc	
(Sub-)clause:					

Testing perfor IEC 60204-1	Electrical equipment of machines	\overleftrightarrow{Z}	$\stackrel{\sim}{\sim}$	\bigcirc	$\stackrel{-}{O}$ $\stackrel{\square}{U}$ \square
(Sub-)clause:					

Testing perfor IEC 60204-1	Electrical equipment of machines	$\stackrel{\varangle}{2}$	$\stackrel{\sim}{\sim}$	\bigcirc	
(Sub-)clause:					

5.21.2 Insulation resistance test

5.21.3 Voltage test

	1. Preliminary test: Verification that no connection exists in the power circuit between the protective bonding circuit and the neutral conductor						
18.4	2. Use of test equipment in accordance with IEC 61180 for the voltage test - Rated frequency of the test voltage: 50 Hz or 60 Hz - Maximum test voltage: twice the rated supply voltage of the equipment or 1000 V , whichever is the greater - Application of the maximum test voltage between the power circuit conductors (including the neutral conductor) and the protective bonding circuit for approximately 1 s - The requirements are satisfied if no disruptive discharge occurs Note: Assemblies and devices which are not rated to withstand this test voltage or which have already been subject to voltage testing in compliance with their product standards were disconnected prior to the test	7					

Testing perfor IEC 60204-1	Electrical equipment of machines	$\stackrel{\star}{z}$	$\stackrel{\sim}{\text { ¢ }}$	\bigcirc	
(Sub-)clause:					

5.22 Other verification						
18.1	1. The electrical equipment complies with its technical documentation					
18.5	2. Protection against residual voltage complies with IEC 60204-1, Sub-clause 6.2.4					
18.6	3. Functional tests Refer also to Section 5.11, Stop functions, and Section 5.12, Control functions Refer to the separate checklist for control systems if applicable					
18.6	4. Functional tests of the electrical equipment passed					
$\begin{aligned} & 7.10 \\ & \text { IEC 61439-1 } \end{aligned}$	5. Short-circuit current rating determined by: - Application of design rules - Calculation - Testing		\square	\square \square \square \square		\square

6 Information for use and technical documentation

Instruction handbook					
Machinery Directive, Annex I, Section 1.7.4	1. Information for use in the language of the Member State				
Machinery Directive, Annex I, Section 1.7.4	2. Original information for use and translation in the language of the country of use are available				
Machinery Directive, Annex I, Section 1.7.4	3. Maintenance instructions for specialised personnel; Community language understood by the specialised personnel				
17.1	4. The information for use contains instructions on identification, transport, installation, use, maintenance, decommissioning and disposal, specifically for equipment and circuits with a protective function - Emergency Switching Off/Stop category - Moving guard - Set-up mode - Manual mode				

6.2 Information on the electrical equipment

6.2.1 General

[^5]| Testing perfo IEC 60204-1 | Electrical equipment of machines | \nwarrow | $\stackrel{\sim}{\stackrel{\sim}{\succ}}$ | \bigcirc | $\stackrel{\llcorner }{O}$ $\stackrel{\square}{W}$ \square |
| :---: | :---: | :---: | :---: | :---: | :---: |
| (Sub-)clause: | | | | | |

17.2 a)	2. Where more than one document is provided, a main document for the electrical equipment as a whole, listing the complementary documents associated with the electrical equipment, is provided			\square		
6.2.2 Information on installing and mounting	Information on installing and mounting					
	The information on installing and mounting addresses the following points:					
17.2 c)	1. Information on installing and mounting including a description of the electrical equipment's connection to the power supply					
17.2 c)	2. The short-circuit current rating of the electrical equipment for each incoming power supply					
17.2 c)	3. The rated voltage, number of lines, frequency, type of distribution system and full-load current for each incoming power supply					
17.2 c)	4. Any additional requirements of the electrical supply/supplies (e.g. maximum supply source impedance, leakage current);					
17.2 c)	5. Space required for removal or servicing of the electrical equipment					
17.2 c)	6. Installation requirements to prevent impairment of cooling					
17.2 c)	7. Environmental limitations (for example lighting, vibration, EMC environment, atmospheric contaminants), where required					
17.2 c)	8. Functional limitations (for example peak starting currents and permitted voltage drops), where required					
17.2 c)	9. Precautions to be taken for the installation of the electrical equipment relevant to electromagnetic compatibility					
$17.2 \mathrm{~d})$	10.Where extraneous parts can be touched simultaneously with the machine, instructions for their connection to the protective conductor; examples of such parts are: - Metallic pipes - Fences - Ladders - Handrails					
6.2.3 Information on function and operation						
17.2 e)	Information should provide the following content as applicable:					
17.2 e)	1. An overview of the structure of the electrical equipment (for example by structure diagram or overview drawing)					
17.2 e)	2. Procedures for programming or configuring, where necessary for the intended use					
17.2 e)	3. Procedures for restarting following an unexpected stop					
17.2 e)	4. Sequence of operation					
6.2.4 Information on maintenance						
17.2 f)	1. Frequency and method of functional testing					

- Electrical equipment -

Testing perfor IEC 60204-1	Electrical equipment of machines	\leftrightarrows	$\stackrel{\sim}{\sim}$	O	
(Sub-)clause:					

17.2 f)	2. Instructions on the procedures for safe maintenance and, where necessary, information on suspending safety functions and/or protective measures (see 9.3.6)					
17.2 f)	3. Guidance on adjustment, repair, and the frequency and method of preventive maintenance					
17.2 f)	4. Details of the interconnections of the electrical components subject to replacement (for example by circuit diagrams and/or connection tables)					
17.2 f)	5. Information on any special devices or tools required					
17.2 f)	6. Information on spare parts					
17.2 f)	7. Information on possible residual risks and on whether any particular training is required; specification of personal protective equipment, where required					
17.2 f)	8. Where applicable, instructions to restrict availability of keys or tools to electrically skilled or instructed persons					
17.2 f)	9. Settings (DIP switches, programmable parameter values, etc.)					
17.2 f)	10.Information for validation of safety-related control functions following repair or modification, and for periodic testing where necessary					
17.2 g)	11.Where required, information on handling, transportation and storage (for example dimensions, weight, environmental conditions, possible ageing constraints)					
$17.2 \mathrm{~h})$	12. Information on proper disassembly and handling of components (for example for recycling or disposal)					

[^0]: $(R)=$ Recommendation

[^1]: $(\mathrm{R})=$ Recommendation

[^2]: $(\mathrm{R})=$ Recommendation

[^3]: $(R)=$ Recommendation

[^4]: $(R)=$ Recommendation

[^5]: $(R)=$ Recommendation

