
IFA Report 1/2020e

Practicable implementation of the
requirements concerning
safety-related embedded software
to EN ISO 13849-1

Authors: Thomas Bömer, Karl-Heinz Büllesbach, Michael Hauke, Stefan Otto, Christian Werner;
Institute for Occupational Safety and Health of the German Social Accident Insurance (IFA),
Sankt Augustin

Published by: Deutsche Gesetzliche Unfallversicherung e. V. (DGUV)
Glinkastr. 40
10117 Berlin
Germany
Phone: 030 13001-0
Fax: 030 13001-9876
Internet: www.dguv.de
E-mail: info@dguv.de

 – August 2021 –

Database of publications: www.dguv.de/publikationen

ISBN (online): 978-3-948657-00-0
ISSN: 2190-7994

Abstract

Practicable implementation of the requirements c oncern-
ing safety-related embedded software to EN ISO 13849-1

This report is intended for software designers producing
and checking safety-related embedded software (SRESW)
for machinery in the context of EN ISO 13849-1. The
explanations assist in interpretation of the normative
requirements and are intended as recommendations
and guidance through the various phases of the software
safety life cycle.

Résumé

Mise en pratique des exigences relatives aux logiciels
intégrés relatifs à la sécurité selon EN ISO 13849-1

Ce rapport s’adresse aux concepteurs de logiciels qui
élaborent et contrôlent les logiciels intégrés relatifs à la
sécurité (SRESW) pour des machines, conformément à la
norme EN ISO 13849-1. Les commentaires servent à l’in-
terprétation des exigences normatives et visent à servir
de recommandation et de ligne directrice pour le déroule-
ment des différentes phases du cycle de vie des logiciels.

Resumen

Implementación práctica de los requisitos de Embed-
ded Software para funciones de seguridad según
EN ISO 13849-1

Este informe va dirigido a desarrolladores de software
que crean y verifican Embedded Software para funciones
de seguridad (SRESW) para maquinaria en el marco de la
normativa EN ISO 13849-1. Las explicaciones sirven para
facilitar la implementación de los requisitos normativos y
pretenden ser una recomendación y una referencia sobre
el camino a seguir a lo largo de las diversas fases del ciclo
de vida útil del software.

Kurzfassung

Praxisgerechte Umsetzung der Anforderungen
für sicherheitsbezogene Embedded-Software nach
EN ISO 13849-1

Dieser Report richtet sich an Software-Entwickler, die
sicherheitsbezogene Embedded-Software (SRESW) für
Maschinen im Rahmen der EN ISO 13849-1 erstellen und
überprüfen. Die Erläuterungen dienen der Interpretation
der normativen Anforderungen und sollen eine Empfe-
hlung und Richtschnur für den Weg durch die verschiede-
nen Phasen des Software-Sicherheits lebenszyklus sein.

Contents

1 Introduction ..6

2 Software design to EN ISO 13849-1 ... 7
2.1 V model of the software safety life cycle ... 7
2.2 Basic and additional measures ..8

3 Measures in the software safety life cycle under the V model ...10
3.1 Safety-related software specification (SRSS) ...10
3.2 System design (SyD) ..10
3.3 Module design (MoD) ...11
3.4 Coding (C) ... 13
3.5 Module testing (MoT) ...14
3.6 Integration testing (InT) .. 15
3.7 Validation (V).. 17

4 General measures ...18
4.1 Quality management (QM) ..18
4.2 Systematic failures (SyF) ..19
4.3 Modification management (MM) .. 20

Bibliography ..21

Annex A: Example module header..22
Example module header ...23

Annex B: List of abbreviations .. 24

6

1 Introduction

This report is intended for software designers producing
and reviewing safety-related embedded software (SRESW)
for machinery within the scope of EN ISO 13849-1 [1]. The
normative requirements relating to these tasks are stated
in clauses 4.6.1 and 4.6.2 of the standard. However, the
requirements are formulated in very general and concise
terms. Whereas very detailed guidance on the program-
ming of safety-related application software (SRASW) is
already available from the IFA [2 to 4], the implications of
the normative requirements for implementation of SRESW
in practice are still often unclear.

The explanations below assist in interpretation of the
normative requirements and are intended as recommen-
dations and guidance through the various phases of the
software safety life cycle.

Some of the content presented below has already been
addressed in the revision work currently being conducted
for the standard’s forthcoming fourth edition; not, how-
ever, in the level of detail described here.

Since the requirements specified for SRESW in the stand-
ard also apply to application software programmed in
a full variability language (FVL), the present report also
applies to the programming of such software.

Figure 1 provides an overview of the guidance already
published by the IFA for the programming of safety-related
software.

Figure 1:
Support from the IFA for the programming of safety-related software (SW: software)

Safety-related
application SW

(SRASW)

Safety-related
embedded SW

(SRESW)

IFA Report 2/2016
on the matrix method

SOFTEMA

LVLFVL

IFA Report 1/2020e
on requirements relating

to SRESW

7

2 Software design to EN ISO 13849-1

1 All references are to the english edition of the standard in the version in force at the time of publication of this document
(December 2015).

2.1 V model of the software safety life cycle

To illustrate the design and verification process for safety-
related software, clause 4.6.1 1 of EN ISO 13849-1 uses the
V model (Figure 2). The basic principle of the V model is
that software design and testing are interrelated activi-
ties of equal value. This is presented figuratively by the
descending and ascending branches of the letter “V”.

The left-hand, descending branch represents the individ-
ual design steps: from the safety requirements specifi-
cation (SRS) [5], through the design phases at system
and module level, to the actual coding. The right-hand,
ascending branch represents the corresponding tasks
in the integration and test phases. During these phases
the modules are combined to form larger subsystems, a
process accompanied by continuous testing. Finally, the
modules are transferred to the target hardware, where the
system as a whole is validated against the requirements
relating to its safety functionality. Documentation is an
important part of design in accordance with the V model.

The output of each level of software design (descending
branch) is a specification of the requirements for the
subsequent level. At the same time, the specification is
the reference point against which the software is tested at
each integration level following coding.

The objective of design under the V model is to obtain
readable, understandable, testable and maintainable
software. Continual reviews and testing at all levels of
the software safety life cycle further permit validation of
software design that is as complete and free of errors as
possible.

The V model cannot be applied to the embedded software
of purchased standard components, since such software
was not designed specifically for use in safety functions,
nor is it accessible to the designer of safety-related
software. Alternative requirements for this scenario are
described at the end of clause 4.6.2 in [1]; they do not
however fall within the scope of this report.

Safety-related
so�ware

specication
(SRSS)

Validation
(V)

System
design
(SyD)

Module
design
(MoD)

Integration testing
(InT)

Module testing
(MoT)

Coding
(C)

Validation

Test

Test

Test Validated
so�ware

Tested integration

Tested modules

Reviewed code
Review

Review

ReviewSo�ware
design

specication
(SDS)

So�ware system
design

specication
(SSDS)

Module design
specication

(MDS)
Result

Verication

Safety
requirements
specication

(SRS)

Figure 2:
Software safety life cycle under the V model (refer to Table 1 for an explanation of the abbreviations)

8

2 Software design to EN ISO 13849-1

Table 1:
Explanation of the abbreviations in Figure 2

Abbreviation Meaning Result

SRSS Safety related software specification: specification of
the software with consideration for the safety func-
tions to be analysed against the requirements of the
safety requirements specification (SRS)

Software design specification (SDS)

SyD System design:
Design of the software with consideration for the
safety-related hardware structure in accordance with
the requirements of the software design specification
(SDS)

Software system design specification (SSDS)

MoD Module design:
Design of the individual software modules in accord-
ance with the requirements of the software system
design specification (SSDS)

Module design specification (MDS)

C Coding:
Coding of the individual software modules in accord-
ance with the requirements, followed by review for
compliance with the module design specification
(MDS)

Reviewed program code of the modules
(including comments)

MoT Module testing:
Testing of the modules for compliance with the
module design specification (MDS)

Tested modules

InT Integration testing:
Testing of the software interfaces and, if possible, of
the software as a whole as transferred to the target
hardware for compliance with the software system
design specification (SSDS)

Tested integration

V Validation:
Review of the software and, if possible, the hardware
against the software design specification (SDS) and
the safety requirements specification (SRS)

Validated software

Note: Figure 2 is based on Figure 6 of EN ISO 13849-1. The
design and test phases shown there have been expanded
to include the associated specification documents and a
more detailed classification of review and test steps. In
the next chapter, the abbreviations after the design and
test steps have the function of referencing the measures
described to the phases of the V model.

2.2 Basic and additional measures

In addition to the V model, clause 4.6.2 of [1] lists meas-
ures to be applied in accordance with the required per-
formance level (PL r) during the design of safety-related
software:

Basic measures (for components with a PL r of a to d):

• Software safety life cycle with verification and
 validation (1.1)

• Documentation of specification and design (1.2)

• Modular and structured design and coding (1.3)

• Control of systematic failures (1.4)

9

2 Software design to EN ISO 13849-1

• Where software-based measures are used to control
random hardware failures: verification of correct imple-
mentation (1.5)

• Functional testing such as black box testing (1.6)

• Suitable activities for the software safety life cycle
 following changes (1.7).

• Additional measures (for components with a PL r of
c to d):

• Project and quality management comparable for exam-
ple to that of the EN 61508 or ISO 9001 (2.1) series

• Documentation of all relevant activities during the soft-
ware safety life cycle (2.2)

• Configuration management for identification of all
configuration characteristics and documents relating to
release of an item of SRESW (2.3)

• Structured specification containing safety requirements
and design (2.4)

• Use of appropriate programming languages and com-
puter-based tools with confidence from use (2.5)

• Modular and structured programming, separation from
non-safety-related software, modules of limited size
with fully defined interfaces, use of design and coding
standards (2.6)

• Verification of the code by walk-through review with
control flow analysis (2.7)

• Extended functional testing (e.g. grey box testing), per-
formance testing or simulation (2.8)

• Impact analysis and appropriate software safety life
cycle activities following changes (2.9)

• Note: The number in brackets after each measure indi-
cates its reference in clause 4.6.2 of [1]. The first number
indicates whether the measure is a basic measure (1)
or an additional measure (2) according to the standard.
The second number indicates the respective referenced
bullet point in the relevant paragraph. For example, the
reference 1.2 indicates the basic measure: “Documenta-
tion of specification and design”.

Since in the standard, the measures are listed uncom-
mented, it is not always readily apparent to design and
testing personnel what activities at what point in the
software’s life cycle are to be inferred from the measures.

The next chapter of this report (Chapter 3) assigns the
measures from clause 4.6.2 of [1] to the individual design
and test phases of the V model. The activities to be
inferred from each measure are also explained.

Generic measures which cannot be assigned under the
V model are listed separately in Chapter 4.

Since some individual measures may be assigned to
multiple phases of the V model, the relevant text from the
standard is abridged in the below table to the respective
relevant part; refer for example to the aforementioned
basic measure: “Documentation of specification” in
Section 3.1.

Note: For software with a PL r of e, [1] refers to the require-
ments relating to SIL 3 in clause 7 of EN 61508-3 [6].
An exception is category 3 and 4 architectures, in which
the two channels exhibit diversity in their specification,
design and coding. In this case, application of the basic
and additional measures described in this document is
sufficient.

10

3 Measures in the software safety life cycle under the V model

3.1 Safety-related software specification
(SRSS)

Reference Measure Explanation

SRSS_1 Documentation of
specification (1.2)

The software design specification is to be drawn up based on the safety requirements specifica-
tion (SRS), the content of which includes a detailed description of the safety functions. Inde-
pendently of the specific implementation, the software design specification describes in general
terms what functions the software is to perform in order to implement the safety functions.
The software design specification is expected to have a structured form. This forms the basis
for the subsequent phase, that of system design. To this end, its content also includes the
definition of the computer-aided tools with confidence from use which are to be used (see C_5,
MoT_2, InT_3).

SRSS_2 Structured speci-
fication of safety
requirements and
structured design
(2.4)

Both a structured specification and structured design are specified. The SRSS_2 measure does
not give rise to any additional activities beyond SRSS_1. It is expected that the safety require-
ments applicable to the software will already be provided through the software design specifica-
tion (SDS).
Planning of design should be reflected in project management (see QM_2). Subsequent per-
formance of structured design is an automatic consequence of application of the V model (see
QM_1).

3.2 System design (SyD)

Reference Measure Explanation

SyD_1 Documentation
of design (1.2)

The software system design specification (SSDS) is to be produced.
This describes implementation of the specified safety functions at system level in the software.
The SSDS is to describe what modules are provided for and how they interact within the software
architecture. The software system design specification thus forms the basis for module design.
The test of the system design including the software-based measures for control of random
hardware failures is to be planned and documented (see InT_1).

SyD_2 Documentation
of all relevant
activities during
the software safety
life cycle (2.2)

Supplementary to SyD_1, review of the system design against the software design specification
is to be documented.
Documentation of all relevant activities during this design phase assists in the avoidance of er-
rors during creation of the safety-related software, and supports its evaluation. The documenta-
tion is to be written in understandable and natural language, supported by pictorial representa-
tions and a glossary of technical terms.

SyD_3 Modular and struc-
tured design (1.3)

The objective is to create a hierarchical description of partial requirements (“modularization”)
for the safety-related functionality intended for implementation, i.e. a description extending
from the coarse to the fine. This enables these partial requirements to be coded individually and
verified.
The use of interrupts is also to be decided as part of the system design process. Consideration is
to be given to the following aspects:
• Description and limitation of functionality: ideally, each software module implements a sin-

gle, defined function to be performed.
• Interfaces (input and output): the connections between the software modules must be lim-

ited, defined unambiguously and described clearly.
• The call relationships between the individual modules must be unique. “Polymorphic” call

structures, i.e. in which the module/method to be called is not determined until runtime, are
to be avoided. The reasoning for exceptions is to be stated and they are to be documented
transparently.

11

3 Measures in the software safety life cycle under the V model

3.3 Module design (MoD)

Reference Measure Explanation

MoD_1 Documentation of
design (1.2)

The module design specification is to be drawn up.
The module design specification describes implementation of the safety-related functions in
the coding of the individual modules. The description should be supported by flow charts, flow
diagrams, data flow diagrams, time sequence charts, etc.
Individual approaches are to be described here in detail. Where necessary, details are to be
provided of the hardware-specific software environment, for example RAM/ROM ranges, I/O
address ranges, the use of interrupts and their vectors, hardware reaction times (for example in
relation to input filters), communication and protocol with a parallel channel, where present.
The module design specification thus forms the basis for coding.

MoD_2 Documentation
of all relevant
 activities during
the software safety
life cycle (2.2)

In addition to MoD_1, review of the module design against the software system design specifica-
tion is to be documented.
See also SyD_2.

MoD_3 Modular and struc-
tured design (1.3)

Implementation of the safety functions described in the software system design specification is
to be substantiated by division into individual, self-contained subroutines (software modules).
This step permits modular, structured coding (see C_3). Structured coding refers to the internal
structure of a program or part of a program, whilst modular coding considers its external charac-
teristics (such as interfaces). Besides the reduction of errors, the objective here is to reduce the
complexity of a program and to avoid poor or confusing program structures. Programs should be
easy to read, maintain and modify.
These objectives give rise to the following requirements:
• The program should be divided into reasonably small software modules (modularization).
• The flow of a program should contain only the following constructs:

 – sequence
 – iteration
 – selection

• Accordingly, the graphical representation of the program’s control flow should contain only
the following elements (see also MoT_3):

 – branch nodes
 – statements
 – merge nodes

• The paths through a software module should be as few in number as possible, and relation-
ships between input and output parameters should be simple.

• The use of complicated calculations as the basis for branching and loop conditions should be
avoided.

• Complicated branching and, in particular, unconditional jumps (goto) should be avoided;
these give rise to unstructured code. The use of dead code is not permissible.

• In order for real-time influences to be reduced to a minimum and clarity of the program
sequence improved, interrupts should not be used. Deviations from this design principle are
permissible only where they significantly simplify the program. The reasons must be docu-
mented on a case-by-case basis.

• Modular coding is characterized by constraints upon the size of software modules and by
fully defined interfaces. Corresponding requirements can be found in MoD_5. For assurance
of these properties, a set of rules is to be laid down in the design phase which are to serve as
binding coding rules during the subsequent phase of coding of the safety-related software.
Corresponding requirements can be found in MoD_6.

12

3 Measures in the software safety life cycle under the V model

Reference Measure Explanation

MoD_4 Separation from
non-safety- related
software (2.6)

During subsequent coding, care is to be taken to prevent non-safety-related software from im-
pairing the execution of safety functions. To this end, rules and design and coding standards are
to be laid down during the module design phase to facilitate encapsulation of the safety-related
software.
Safety-related software refers to a safety function implemented in the form of software. It begins
at the point in the software as a whole at which a specified, safety-related item of data is read. It
further contains the part of the software that processes the item of data, and ends at the point at
which a safety-related item of data is output. The safety-related software includes management
of the relevant data (e.g. declaration, initialization). Safety-related software also includes the
software implementations of test routines that are required for adequate fault detection (diag-
nostic coverage) of the functional channels.

MoD_5 Limited module
size with fully
defined interfaces
(2.6)

Software modules should have a defined size limit and fully defined interfaces. This gives rise to
the following specific requirements:
• Ideally, a software module should perform a single task or fulfil a single function.
• Interfaces between software modules should be limited and fully defined; each interface of a

software module should, if possible, contain no parameters other than those required for it to
fulfil its function.

• A fully defined interface (for call parameters and return values) includes (list not exhaustive):
 – number of parameters passed
 – data types
 – parameter value ranges provided for

• Software modules should communicate with other software modules solely through their
interfaces. Variables in a module should be private. Should global or shared variables be
used, they should be well structured, access to them should be controlled, and their use
should always be justified. The use of meaningful names for global variables is advantageous.

• All interfaces of the software modules should be fully documented (including in the code
listing).

• A software module should not exceed a certain size (recommended maximum: 50 lines); an
exception to this is sequential code of the same functionality (such as a self-test of the indi-
vidual commands of a microprocessor).

• The nesting depth of module calls is to be kept as low as possible (a maximum nesting depth
of five calls is recommended).

• Software modules should have only one input and one output (an additional output can be
provided for error handling).

MoD_6 Use of design and
coding standards
(2.6)

Creation and observance of coding standards is absolutely essential for coding. The use of
coding standards reduces the likelihood of errors and at the same time facilitates verification at
a later stage.
The coding standards should include all the coding requirements stated in the sections above.
The coding standards should cover at least the following areas and support them with specific
requirements:
• Modular approach: limitation of the size of software modules; fully defined interfaces (see

MoD_5)
• Comprehensibility of the code: for example, unique and coherent naming of variables; stand-

ards for documenting the code (see C_1)
• Verifiability and testability: for example, protection mechanisms for critical library functions,

avoidance of dead code
• Good programming technique: for example, checking of pre- and post-conditions and return

conditions, catching of invalid states

13

3 Measures in the software safety life cycle under the V model

3.4 Coding (C)

Reference Measure Explanation

C_1 Documentation
of design (1.2)

The module design specification serves as the basis for coding. Documentation of design refers
to provision of the code listings, including comments.
Adequate commenting of the code is absolutely essential, in order for it to be readable, compre-
hensible, testable and maintainable.
Commenting of the code should provide, for example, a description of the algorithms and other
special features and a module header.
The module header should contain at least the following information (refer to the example in
Appendix A):
• Name of the author
• Description of the objective and function in the overall context of the module (not merely the

content)
• Inputs and outputs
• Configuration management history

C_2 Documentation
of all relevant ac-
tivities during the
software safety life
cycle (2.2)

In addition to C_1, review of the coding (see C_6) against the module design specification is to
be documented.
See also SyD_2.

C_3 Modular and
structured coding
(1.3; 2.6)

The measures set out in the module design (see MoD_3) are to be implemented at code level, if
necessary with iterations.

C_4 Use of suitable
programming
languages (2.5)

The suitability of the programming language used relates to demonstration of the uniqueness
and traceability of each program or program part within its program runtime. For example,
unambiguous definition of a variable or of the behaviour of the module under analysis must be
possible at all points during a walk-through.
Where appropriate, the variability of the programming language should be limited by the exclu-
sion of language constructs that are particularly prone to error.

C_5 Use of suitable
computer-aided
tools with confi-
dence from use
(2.5)

The use of computer-aided tools in the coding process is a necessary and important measure
for the avoidance of errors. The tools to be used are defined in the software design specification
(see SRSS_1).
The term “confidence from use” is understood in this context to mean that the programmers
have been trained in use of the tools and the development environment, and that the tools
have been used in past projects without giving rise to faults. Evidence to this effect must be
furnished.

C_6 Verification of the
code by a walk-
through/review
(2.7)

Upon completion of coding, the individual modules are to be reviewed against the module
design specification in a code review or code walk-through. The review is to be performed by
the programmer(s) together with one or more persons with equivalent technical expertise. The
objective of the review or walk-through is to check the code for the following:
• Errors or potential errors
• Quality of the comments
• Compliance with coding standards (a tool may also be used for this purpose)
• Clarity and readability
• Completeness in terms of the functionality to be implemented
A walk-through and a review are considered identical in terms of the measures to be performed.

14

3 Measures in the software safety life cycle under the V model

3.5 Module testing (MoT)

Reference Measure Explanation

MoT_1 Documentation
of all relevant ac-
tivities during the
software safety life
cycle (2.2)

The module testing (see MoT_3 to MoT_5) is to be documented. The objective is to demonstrate
that all requirements emanating from the module design specification have been implemented.
See also SyD_2.

MoT_2 Use of suitable
computer-aided
tools with confi-
dence from use
(2.5)

Tools, wherever possible computer-aided, are also required during module testing as an im-
portant measure for preventing errors. The tools to be used are defined in the software design
specification (see SRSS_1).
For the term “confidence from use”, see C_5. Confidence from use must be demonstrated and
documented accordingly, and refers here specifically to use during the module test.

MoT_3 Verification of the
code by control
flow analysis (2.7)

The control flow of the program – in this case, of a module – is to be analysed by means of a
control flow graph, and evaluated with reference to the criteria stated below.
Control flow analysis is a tool used for static code analysis and has the purpose of revealing
possible structural flaws within a program flow. A control flow graph is a directed graph with an
initial and a final node (initial and final statements of the module). Between the initial and final
nodes are further nodes (statements), which are connected to each other by “edges”. The edges
describe the possible control flow between the statements.
Besides the initial and final nodes, the pictorial representation of the control flow may contain
only the following elements:
a) Statements (nodes with only one incoming and one outgoing edge each)
b) Branches (nodes with at least two successor nodes)
c) Merges (nodes with at least two incoming edges)
The control flow graph must be reducible in steps to a single node. Should this not be possible,
the code is not well structured and should be optimized.

MoT_4 Functional testing,
for example black
box testing (1.6)

Functional testing is to be performed at module level to verify compliance with the module
design specification. The development environment for example can be used for this purpose. A
test bed may need to be programmed for performance of the tests. Test data, pre- and post-con-
ditions where applicable, and test results (e.g. outputs, changes in internal states, etc.) are to
be logged. The purpose of module testing is to ensure that the modules satisfy the functionality
required of them as defined in the module design specification. The functionality of a module
equates in this context to its input and output behaviour. To verify this, input data adequately
reflecting the expected function are supplied to each module. The data should cover at least the
following ranges:
• Data from permissible ranges
• Data from impermissible ranges
• Data from range limits
Permissible ranges and range limits are to be determined from the module design specification.

15

3 Measures in the software safety life cycle under the V model

Reference Measure Explanation

MoT_5 Extended function-
al testing, for
example grey box
testing, perfor-
mance testing or
simulation (2.8)

Besides the input data stated in MoT_4, invalid input data must also be considered for safety-re-
lated software in PL c and d. It is to be determined whether these data are intercepted by the
programming of the module, or lead to undesired or unanticipated reactions. This concerns, for
example, the following inputs:
• Divisor of zero
• ASCII space
• Empty stack or empty list element
• Full matrix
• Empty table entry
In test runs for error detection, as much of the code as possible should be executed. For this
purpose, coverage tests are to be performed based on the elements of the control flow graph
(MoT_3). The following test methods are to be distinguished:
• Statement testing
• Branch or decision testing
• Path testing
• Condition testing
If possible, the objective should be for 100% coverage to be achieved, as no conclusion can be
drawn regarding whether statements that have not been executed are correct. The existence of
statements that cannot be executed by any test case may indicate dead code. Should testing
reveal unconditional jumps, the code must be modified to avoid them.

3.6 Integration testing (InT)

Reference Measure Explanation

InT_1 Where software-
based measures
are used to control
random hardware
failures: verifi-
cation of correct
implementation
(1.5)

Software-based measures may be necessary to control random hardware failures in order to sat-
isfy the required diagnostic coverage, depending on the selected system structure (categories 2,
3 and 4). Software-based measures include, for example:
• RAM, ROM and CPU tests
• Tests of hardware components
• Plausibility tests of calculated and input values
Where such software-based fault detection measures are necessary, their efficacy and correct
implementation are to be verified. For this purpose, the test cases defined in SyD_1 must be
executed in order for the respective triggered test routines to be verified. The result of this verifi-
cation is to be documented.
The standard does not require control of random hardware failures for implementations in
category B (PL a or b). Software-based measures for this purpose are therefore not normally
implemented.

InT_2 Documentation
of all relevant ac-
tivities during the
software safety life
cycle (2.2)

The performance and results of the integration testing (see InT_1 and InT_4 to InT_6) are to be
documented. The objective is demonstration that all requirements emanating from the software
system design specification have been implemented.
See also SyD_2.

InT_3 Use of suitable
computer-based
tools with confi-
dence from use
(2.5)

The use of computer-based tools is an important measure in integration testing for the avoid-
ance of errors. The tools to be used are defined in the software design specification (see
SRSS_1).
For the term “confidence from use”, refer to C_5. Confidence from use must be demonstrated
and documented appropriately, and refers at this point specifically to use in the context of
integration testing.

InT_4 Verification of the
code by control
flow analysis (2.7)

At the level of the software as a whole, static control flow analysis of the various modules is to
be performed with the aid of a call graph. The call graph has the function of displaying the call
relationships between the individual modules. Excessively complex call structures should be
avoided.
Where polymorphic call structures have been used, all possible forms of a call must be analysed
with reference to the available documentation (see SyD_3).

16

3 Measures in the software safety life cycle under the V model

Reference Measure Explanation

InT_5 Functional testing,
for example black
box testing (1.6)

Integration testing in this phase concerns merging of the individual software modules to form
a complete piece of software (integration testing at software level), and – if possible – integra-
tion of the software as a whole on the target hardware (integration testing at hardware level).
The tests described below are to be used to verify the software’s compliance with the software
system design specification.
Performance of integration testing is conditional upon the individual components already having
been tested in the course of coding and performance of the module testing, and any defects
already having been corrected. The components are then combined to form increasingly large
subsystems.
Testing on the software level concerns the interfaces and interaction between the individual
components. Since the subsystems as such may not be executable until the software as a whole
has been completed, a test framework (see also MoT_4) may have to be created for the compo-
nents that are still missing. Integration-level testing is intended to detect the following errors:
• Incompatible interface formats and protocol errors
• Conflicts in data interpretation
• Transfer of data insufficiently swiftly or at excessively short intervals
The test environment for integration testing on the hardware level should resemble the antic-
ipated operating environment as closely as possible. Accordingly, the software and hardware
peripherals installed as the test environment should be as similar as possible to the peripherals
that are actually to be used at a later stage.
The system is to be supplied with input data that adequately reflect anticipated normal opera-
tion. Functional testing is to cover all realistically foreseeable input conditions and deliver the
specified results (including for example the reaction time). The results are to be monitored and
compared with the requirements set out in the software system design specification. Where
applicable, requirements not previously set out in writing are to be added.

InT_6 Extended function-
al testing, for
example grey box
testing, perfor-
mance testing or
simulation (2.8)

Extended functional testing must be performed in addition to the tests described in InT_5. The
behaviour of the specified safety functions in the event of uncommon or unspecified inputs is to
be verified in the course of the extended functional testing.
The following may for example be performed/executed:
• Functional testing with input conditions which is rarely anticipated or which lie outside the

specified properties of the safety functions
• Functional tests involving boundary conditions under limit conditions (such as extreme

ambient conditions, component dimensioning at the limit values, maximum thermal loading
of components, maximum processor loading)

• Functional testing based on knowledge of the internal coding of the software as a whole
• Functional testing of hardware elements of the safety functions (such as electronic circuits)

employing software simulation

17

3 Measures in the software safety life cycle under the V model

3.7 Validation (V)

Reference Measure Explanation

V_1 Documentation
of all relevant ac-
tivities during the
software safety life
cycle (2.2)

Validation (see V_2) is to be documented. The objective is to demonstrate that all requirements
emanating from the software design specification have been implemented.
See also SyD_2.

V_2 Functional testing
(1.6)

In the sense of the standard, validation constitutes the final check of the tests performed and
their results against the requirements of the software design specification in the individual
phases of the V model.
Should integration already have taken place on the target hardware, validation also includes
checking against the safety requirements specification (SRS).
In the case of discrete components, validation is to be performed prior to placing on the market.
As a rule, functional testing solely for validation purposes is generally no longer performed;
integration testing and validation are combined in this case.
In the case of machinery, validation forms part of installation and acceptance testing at the
operator’s premises. Checking against the safety requirements specification (SRS) can be per-
formed at this point by way of additional functional testing in the real environment.

18

4 General measures

4.1 Quality management (QM)

Reference Measure Explanation

QM_1 Software safety
life cycle includ-
ing verification
and validation,
application of the
V model (1.1)

The V model (Figure 2) is to be applied with the objective of structuring design of the software
and demonstrating its suitability in defined phases and activities. This progressively gives rise
to more detailed specifications in the descending branch of the V model. Following coding of the
individual software modules, they are integrated and tested in the ascending branch.

QM_2 Project manage-
ment and quality
management
 system compa-
rable with, for
example, the
EN 61508 series or
EN ISO 9001 (2.1)

Project and quality management are to be applied in order for errors to be avoided during soft-
ware design.
Important measures for implementation of this requirement are:
• Generation of a quality assurance manual describing an organizational model specifically for

quality assurance
• Definition of how design is to be organized, including definition of the tasks and responsibili-

ties of the organizational units, competences of the quality assurance department, independ-
ence of quality assurance (internal inspection) from design

• Definition of the schedule (phase models) specifying all activities that are relevant during
performance of the project, including internal inspections and their scheduling, and updating
of the project

• Definition of a set procedure for internal inspection covering planning, performance and
review of inspection, release mechanisms for sub-products, assurance of regular inspections

• Configuration management including version management and control according to QM_3
• Introduction of computer-aided tools, conducting and demonstration of staff training
• Consistent application of the second pair of eyes principle
Where software is designed in accordance with EN 61508, the requirements stated are already
taken into account. Where the introduction and operation of a quality management system
to EN ISO 9001 has already been demonstrated, the measures stated must be implemented
 specifically for design of an item of software.

QM_3 Configuration
management (2.3)

In order for errors to be avoided during the design of safety-related software and to permit
subsequent review of the software as a whole with consideration for the safety functions under
analysis, software configuration management is to be applied. Procedures must be in place:
a) For the unique identification of all components of a software project, including but not

limited to:
• Version management of the source code of the individual software modules and the soft-

ware as a whole
• Specification of the software and design documents
• Test plans and test results
• Verification documents
• Any software elements already in existence
• Computer-aided tools and development environments used to produce the software

b) For management of software modifications, to ensure that the specified requirements
 continue to be met following changes, including measures to:
• Prevent unauthorized modifications
• Prevent the use of non-approved components
• Analyse the influence of intended modifications
• Release intended modifications

c) Retain the software and all related documentation
In its simplest form, software configuration management can be performed manually. The use of
suitable computer-aided tools and development environments for this purpose is however more
intelligent and effective.
d) Release of the software as a whole following completion of the design process

19

4 General measures

4.2 Systematic failures (SyF)

Reference Measure Explanation

SyF_1 Control of
systematic
failures (1.4)

In some cases, which are stated in EN ISO 13849-1, clause G.2, software engineering measures
are used to control systematic failures. To verify that they have been implemented correctly and
in full, the measures to be applied for the project are to be described in the software design
specification based upon the safety requirements specification (SRS), and their implementation
is to be documented in the software system design specification and module design specifica-
tion.
These requirements concern the following measures stated in clause G.2:
• Program sequence monitoring:

Various forms of monitoring may be possible as a function of the hardware structure selected,
and based on the PL r . Examples are an external hardware watchdog triggered from within the
software, or temporal and logical monitoring of the program sequence implemented by com-
munication with a parallel channel. Irrespective of how monitoring is implemented, the safe
state (such as the de-energized state) must be assumed when a fault is detected.

• Measures to control errors in the data communication process:
Where execution of a safety function requires secure data communication (for example over
bus systems), measures must be taken to control the following error models for safety-related
messages:

 – repetition
 – loss
 – insertion
 – incorrect sequence
 – corruption
 – delay
 – masquerade

For further details of safe data communication, refer to EN 61784-3 [7].
Correct implementation of measures for the control of systematic failures is to be considered
and verified during each phase of the V model, particularly during the specification and valida-
tion phases.

20

4 General measures

4.3 Modification management (MM)

Reference Measure Explanation

MM_1 Suitable activities
for the software
safety life cycle
following changes
(1.7)

Before changes are made to the software, an analysis of the possible impacts should be
performed and the affected software modules identified. An impermissible impact could for
example be a reduction in the specified properties of the safety functions, for example in terms
of reaction time or behaviour.
Following performance of the impact analysis, it is to be determined, in consideration of the
PL r , what tests are to be repeated on what levels of the V model once the modification has been
completed. This can be achieved with reference to the following criteria:
• Repetition only of the tests designated as being of high priority
• Where functional testing is performed, waiving of certain variants (special cases)
• Limitation of the tests to certain configurations
• Limitation of the tests to certain subsystems
In order to put the conditions in place for evaluation of these criteria, detailed documentation
of, reasoning for and evaluation of the test cases performed (for each software module) is
required at the test levels of the V model (Sections 3.5 to 3.7). This should also identify the tests
to be considered should repetition be required following changes.

MM_2 Impact analysis
and appropriate
software safety
life cycle activities
following changes
(2.9)

Performance of the impact analysis described in MM_1 is imperative. The criteria stated in MM_1
are to be interpreted more strictly owing to the higher PL r , as a result of which a greater number
of tests must be repeated.
The verification steps performed are to be documented.

21

Bibliography

Bibliography

[1] EN ISO 13849-1: Safety of machinery – Safety-related
parts of control systems – Part 1: General principles
for design (2015).

[2] Huelke, M.; Becker, N.; Eggeling, M.: Sicherheits-
bezogene Anwendungssoftware von Maschinen –
Die Matrixmethode des IFA. IFA Report 2/2016.
Published by: Deutsche Gesetzliche Unfallver-
sicherung e. V. (DGUV), (2016).
www.dguv.de, Webcode: d1023063

[3] Software-Assistent SOFTEMA: Spezifikation zur
IFA-Matrixmethode bei sicherheitsbezogener
Anwendungssoftware. Published by: Deutsche
Gesetzliche Unfallversicherung e. V . (DGUV), Sankt
Augustin, www.dguv.de, Webcode: d1082520

[4] Hauke, M.; Schaefer, M.; Apfeld, R.; Bömer, T.;
Huelke, M.; Borowski, T. et al.: Functional safety of
machine controls - Application of EN ISO 13849. IFA
Report 2/2017e. Published by: Deutsche Gesetzliche
Unfallversicherung e. V. (DGUV), (2019).
www.dguv.de, Webcode: e1179198

[5] Apfeld, R.; Hauke, M.; Otto, S.: The SISTEMA Cook-
book 6: Definition of safety functions: what is impor-
tant? Published by: Institut für Arbeitsschutz der
Deutschen Gesetzlichen Unfallversicherung (IFA),
Sankt Augustin, Germany (2015).
www.dguv.de, Webcode: e109249

[6] EN 61508-3: Functional safety of electrical/elec-
tronic/programmable electronic safety-related
systems – Part 3: Software requirements (2010).

[7] EN 61784-3: Industrial communication networks –
Profiles – Part 3: Functional safety fieldbuses – Gen-
eral rules and profile definitions (2021).

https://publikationen.dguv.de/widgets/pdf/download/article/3141
https://www.dguv.de/ifa/praxishilfen/praxishilfen-maschinenschutz/software-softema/index.jsp
https://www.dguv.de/ifa/publikationen/reports-download/reports-2017/ifa-report-2-2017/index-2.jsp
https://www.dguv.de/ifa/praxishilfen/practical-solutions-machine-safety/software-sistema/sistema-kochbuecher/index.jsp

22

Annex A:
Example module header

23

Annex A: Example module header

Example module header

In accordance with the C_1 basic measure, which is man-
datory for a PL r of a or higher, each module (each method
in object-oriented programming) must be preceded by
its own module header, which specifies the “who, when,
what, why and how”. As a minimum, the module header
should list the following information:

• Module name
• Brief description of the function
• Version number
• Legend of changes
• Date of last change
• Person responsible
• Input parameters
• Output parameters

• Modified registers and memory ranges
• Exit with error
• Higher-level modules (called by)
• Lower-level modules (calls)
• Stack depth (for example in Assembler)
• Changes to flags (for example in Assembler)

Also, if necessary:

• Use of a register bank (e.g. in Assembler),
• Runtime
• Timeouts
• Particular comments

Example module header

/* ** */
/* */
/* Module:
/* */
/* Version: ... Modified by: ... Date: */
/* Version: ... Modified by: ... Date: */
/* Version: ... Modified by: ... Date: */
/* */
/* Function of the module: */
/* */
/* */
/* */
/* Input parameters: */
/* Output parameters: */
/* */
/* Modified registers: */
/* Modified memory ranges: */
/* Modified flags: */
/* */
/* Exit with error: */
/* */
/* Higher-level modules: */
/* Lower-level modules: */
/* */
/* Stack depth: */
/* */
/* Register bank used: */
/* */
/* Particular comments: */
/* */
/* ** */

24

Annex B:
List of abbreviations

25

Annex B: List of abbreviations

List of abbreviations

C Coding

CPU Central Processing Unit

FVL Full Variability Language

InT Integration Testing

LVL Limited Variability Language

MDS Module Design Specification

MM Modification Management

MoD Module Design

MoT Module Testing

PL Performance Level

PL r required Performance Level

RAM Random Access Memory

ROM Read Only Memory

SDS Software Design Specification

SRASW Safety Related Application Software

SRESW Safety Related Embedded Software

SRS Safety Requirement Specification

SRSS Safety Related Software Specification

SSDS Software System Design Specification

SyD System Design

SyF Systematic Failure

QM Quality Management

V Validation

Deutsche Gesetzliche
Unfallversicherung e.V. (DGUV)

Glinkastraße 40
10117 Berlin
Phone: 030 13001-0
Fax: 030 13001-9876
E-mail: info@dguv.de
Internet: www.dguv.de

	Title
	Imprint
	Abstracts
	Contents
	1	Introduction
	2	Software design to EN ISO 13849-1
	2.1	V model of the software safety life cycle
	2.2	Basic and additional measures

	3	Measures in the software safety life cycle under the V model
	3.1	Safety-related software specification (SRSS)
	3.2	System design (SyD)
	3.3	Module design (MoD)
	3.4	Coding (C)
	3.5	Module testing (MoT)
	3.6	Integration testing (InT)
	3.7	Validation (V)

	4	General measures
	4.1	Quality management (QM)
	4.3	Modification management (MM)

	4.2	Systematic failures (SyF)

	Bibliography
	Annex A - Example module header
	Annex B - List of abbreviations
	Address

