
IFA Report 2/2016e

Safety-related application software for
machinery – The IFA matrix method

Authors: Michael Huelke (†)
 Institute for Occupational Safety and Health of the German Social Accident Insurance,
 Sankt Augustin

 Norbert Becker, Manfred Eggeling
 Department of Electrical Engineering, Mechanical Engineering and Technical Journalism,
 Bonn-Rhein-Sieg University of Applied Sciences, Sankt Augustin

Published by: German Social Accident Insurance (DGUV)
 Glinkastrasse 40
 10117 Berlin
 Tel.: +49 30 288763800
 Fax: +49 30 288763808
 Internet: www.dguv.de
 Email: info@dguv.de

 – December 2024 –

Database of publications: www.dguv.de/publikationen

Title image: ©Monkey Business – fotolia

ISBN (online): 978-3-948657-70-3
ISSN: 2190-7994

Copyright: All rights reserved. Reproduction is only permitted with express permission.

Available: Available from your accident insurance provider or at
 https://publikationen.dguv.de/DguvWebcode?query=p022716

http://www.dguv.de
mailto:info%40dguv.de?subject=
http://www.dguv.de/publikationen
https://publikationen.dguv.de/DguvWebcode?query=p022716

Abstract

Safety-related application software for machinery – The IFA matrix method

Manufacturers in the machine construction sector are
increasingly using application programming of safety controls in
order to implement safety functions. The current EN ISO 13849
and EN 62061 standards are the first to define requirements
concerning the development of software employed for safety
functions. The requirements are intended to prevent hazardous
systematic errors in the safety-related application software
employed for a machine. The essential requirement imposed by
these standards is the observance of a structured development
process: the V-model. The further requirements concerning
measures for the avoidance and control of errors during
development are also formulated in the standards in the usual
very general terms. Furthermore, few examples and proposals
for implementation of these requirements have been published
to date. Interpretation of the standards during software
development in machine construction is therefore often unclear,
and presents difficulties during implementation. This situation
prompted the launch of a project (FF-FP0319, project term 2011 to
2013) funded by the

DGUV and conducted at the Bonn-Rhine-Sieg University of
Applied Sciences. In the project, which was conducted in
conjunction with machinery construction companies from
the region, a development method suitable for application
in the field – the IFA matrix method – was formulated and
documented in a research report together with a number of
examples. This research report forms the core of the present
IFA Report. The IFA matrix method described here can be used
to specify, validate and document the application software of
safety functions in accordance with the standards. The report
also provides further information on application programming
for safety-related machine controls. Application programming
for standard controls typically entails greater effort than for
certified safety controls. Several chapters of the report therefore
refer to the application of standard controls. In order for the
IFA matrix method to be implemented efficiently, the IFA is
developing SOFTEMA, a software tool. The examples in the
report are available for download and can be viewed by means
of SOFTEMA.

Kurzfassung

Sicherheitsbezogene Anwendungssoftware von Maschinen – Die Matrixmethode des IFA

Unternehmen im Maschinenbau realisieren Sicherheitsfunk-
tionen immer mehr durch die Anwendungsprogrammierung
von sicherheitsgerichteten Steuerungen. Die aktuellen Normen
DIN EN ISO 13849 und DIN EN 62061 definieren erstmals auch
Anforderungen an die Softwareentwicklung von Sicherheitsfunk-
tionen. Dadurch sollen gefährliche systematische Fehler in der
sicherheitsbezogenen Anwendungssoftware für eine Maschine
vermieden werden. Wesentliche Anforderung dieser Normen
ist, einen strukturierten Entwicklungsprozess einzuhalten: das
V-Modell. Auch die weiteren Anforderungen zu fehlervermeiden-
den und -beherrschenden Maßnahmen bei der Entwicklung sind
in den Normen wie üblich sehr allgemein gehalten. Zudem gibt
es bislang wenige publizierte Beispiele und Vorschläge für die
Umsetzung dieser Anforderungen. Daher ist die Interpretation
der Normen bei der Softwareentwicklung im Maschinenbau oft
unklar und bereitet Schwierigkeiten in der Umsetzung. Dies war
der Anlass für ein von der DGUV gefördertes und an der Hoch-
schule Bonn-Rhein-Sieg durchgeführtes Projekt (FF-FP0319,

Laufzeit 2011 bis 2013). In dem Projekt wurde gemeinsam mit re-
gionalen Maschinenbauunternehmen eine praktisch anwendba-
re Entwicklungsmethode – die Matrixmethode des IFA – herge-
leitet und in einem Forschungsbericht mit vielen Beispielen
dokumentiert. Dieser Forschungsbericht bildet den Kern des vor-
liegenden IFA Reports. Mit der hier dargestellten Matrixmethode
des IFA kann Anwendungssoftware von Sicher heitsfunktionen
normgerecht spezifiziert, validiert und dokumentiert werden.
Darüber hinaus vermittelt der Report weitere Informationen
rund um Anwendungsprogrammierung für sicherheitsbezogene
Maschinensteuerungen. Der Aufwand für die Anwendungspro-
grammierung ist bei Standardsteuerungen typischerweise höher
als für zertifizierte Sicherheitssteuerungen. Daher beziehen sich
mehrere Kapitel des Reports auf die Anwendung von Standard-
steuerungen. Zur effizienten Anwen dung der Matrixmethode
entwickelt das IFA ein Softwaretool
namens SOFTEMA. Die Bei spiele des Reports sind zum Down-
load verfügbar und können mit SOFTEMA betrachtet werden.

Résumé

Logiciels d‘application pour machines relatifs à la sécurité – La méthode matricielle de l‘IFA

Dans le secteur de la construction mécanique, les entreprises
ont de plus en plus souvent recours à des logiciels
programmables de commandes liées à la sécurité pour réaliser
les fonctions de sécurité. Les normes actuelles DIN EN ISO
13849 et DIN EN 62061 définissent pour la première fois
également des exigences applicables à la conception des
logiciels qui commandent les fonctions de sécurité, le but
étant d’éviter des erreurs systématiques dangereuses dans
les logiciels d’application relatifs à la sécurité des machines.
L’exigence essentielle de ces normes porte sur le respect
d’un processus de développement structuré : le modèle en
V. Comme de coutume, les autres exigences portant sur les
mesures à prendre pour éviter et maîtriser les erreurs lors du
développement restent aussi très générales dans les normes. De
plus, il n’existe à ce jour que peu d’exemples et de propositions
publiés sur la mise en pratique de ces exigences. C’est
pourquoi, lors de la conception de logiciels dans la construction
mécanique, l’interprétation des normes reste souvent floue
et s’avère difficile à mettre en pratique. C’est ce qui a été à
l’origine d’un projet subventionné par la DGUV et réalisé par
l’université des Sciences appliquées

de Bonn Rhein-Sieg (FF-FP0319, durée de 2011 à 2013). Dans
le cadre de ce projet, une méthode de développement facile à
utiliser dans la pratique – la méthode matricielle de l’IFA – a
été élaborée avec des entreprises régionales de construction
mécanique, et documentée dans un rapport de recherche
comportant de nombreux exemples. Ce rapport de recherche
constitue l’essentiel du présent rapport de l’IFA. La méthode
matricielle de l’IFA qui y est décrite permet de spécifier, de
valider et de documenter les logiciels de commandes liées à la
sécurité, et ce en conformité avec les normes. Le rapport fournit
en outre d’autres informations concernant la programmation
d’applications pour les systèmes de commande de machines
relatifs à la sécurité. En règle générale, la programmation d’une
application sur un système de commande standard nécessite
plus de travail et de coûts que sur les automates de sécurité
certifiés. C’est pourquoi plusieurs chapitres du rapport sont
consacrés à l’utilisation de systèmes de commande standard.
Pour utiliser efficacement la méthode matricielle de l’IFA,
celui-ci a mis au point un outil logiciel baptisé SOFTEMA. Les
exemples du rapport peuvent être téléchargés et visualisés avec
SOFTEMA.

Resumen

Software de aplicación de seguridad para máquinas – El método matriz de la IFA

Cada vez más, las empresas del ámbito de ingeniería industrial
realizan funciones de seguridad mediante la programación de
aplicaciones de controles relativos a la seguridad. Las normas
actuales DIN EN ISO 13849 y DIN EN 62061 definen además
por primera vez requisitos a tener en cuenta en el desarrollo
de software para funciones de seguridad. De este modo se
pretende evitar que se produzcan errores de sistema peligrosos
en el software de aplicación de seguridad para una máquina.
Un requisito esencial de estas normas es que se cumpla un
proceso de desarrollo estructurado: el modelo en V. También
el resto de los requisitos para el desarrollo con medidas para
evitar y con trolar fallos se describe en estas normas, como
de costumbre, de manera muy general. Además, hasta la
fecha se han publicado pocos ejemplos o propuestas sobre la
implementación de estos requisitos. Por tanto, con frecuencia
la interpretación de las normas en el desarrollo de software para
maquinaria indus trial resulta poco clara y genera dificultades
a la hora de aplicarla en la práctica. Este es el motivo por el
cual la DGUV promovió la realización de un proyecto, que se
llevó a cabo en la universidad de Bonn-Rhein-Sieg (FF-FP0319,

de 2011 a 2013). En este proyecto se derivó junto con empresas
regionales de ingeniería industrial un método de desarrollo
aplicable en la práctica, el método matriz de la IFA, que fue
documentado en un informe de investigación con un gran
número de ejemplos. Este informe de investigación constituye la
base del presente informe de la IFA. Con el método matriz de la
IFA aquí presentado se puede especificar, validar y documentar
el software de aplicaciones para funciones de seguridad
conforme a la norma. Además, el informe transmite otras
informaciones en torno a la programación de aplicaciones para
controles de maquinaria relativos a la seguridad. El trabajo que
se invierte en la programación de aplicaciones es por lo general
mayor para controles estándar que para controles de seguridad
certificados. Por este motivo se dedican varios capítulos del
informe a la aplicación de controles estándar. Para aplicar de
manera eficiente el método matriz de la IFA, esta organización
está desarrollando una herramienta de software denominada
SOFTEMA. Los ejemplos del informe se pueden descargar en
formato electrónico y se pueden consultar con SOFTEMA.

Contents

1 Foreword �� 9

2 Introduction �� 11
2.1 Software quality requirements ... 11
2.2 The DGUV’s FF-FP0319 research project .. 11
2.3 The purpose of the present IFA Report ..12

3 Standards and the Report: an overview ��� 13
3.1 Software categories and language types ..13
3.2 Requirements concerning safety-related application software (SRASW) ... 14
3.3 Further informative content of DIN EN ISO 13849-1 concerning SRASW ..15
3.3.1 Annex G: Systematic failure ...15
3.3.2 Annex J: Software ..15
3.4 Relevant normative content of DIN EN ISO 13849-2:2013 concerning SRASW .. 16

4 Risk assessment and safety functions ��� 17
4.1 Safety functions for risk reduction ...17
4.2 Definition of safety functions and their properties ..17
4.3 Influence of the risk assessment on software development ..17
4.4 Influence of the software structure on software development .. 18
4.5 Influence of the software structure on software development .. 18

5 Measures for fault avoidance ���19
5.1 Typical project procedure .. 19
5.2 V-model development model ..20
5.3 Description of the V-model ..21
5.4 Simplification of the V-model for typical SRASW .. 22
5.5 Document types for the simplified V-model ... 23
5.6 Specification of safety requirements and safety functions ... 25
5.7 Programming guidelines ... 25
5.8 Modular and structured programming ... 25
5.9 Separation of safety-related and non-safety-related software .. 27
5.10 Functional test and expanded test ...28
5.11 Test coverage ...28
5.12 Documentation ..29
5.13 Configuration management ..29
5.14 Modifications ...29
5.15 Two-man rule and degrees of independence ...30
5.16 Project management ...31
5.17 External testing of SRASW ... 32

6 Development of safety-related application software ��33
6.1 Matrix-based specification and documentation .. 33
6.2 Example of matrix-based specification and documentation ... 34
6.3 Specification of the safety functions ... 34
6.4 Specification of the control hardware .. 35
6.5 Catalogue of measures for fault avoidance .. 37
6.6 Architecture of the safety program and the standard program ...39
6.7 Software specification with the cause and effect matrix ...41
6.8 Verification and validation in the IFA matrix method ..44
6.9 Compact software specification ..46
6.10 Notes on the inputs stage ... 47
6.11 Consideration of multiple operating modes and function blocks developed in-house ..48
6.12 Addressing of configurable safety controls .. 55
6.13 Matrix-based documentation of function blocks developed in-house .. 55
6.14 Summary of the matrix-based documentation ... 58
6.15 Procedure for modifications .. 59
6.16 Simplification of recurring safety functions ...64
6.17 Observance of measures for fault control ..66

7 Overview of the software examples covered �� 69
7.1 Robot production cell ...70
7.2 Robot production cell with setup mode ..71
7.3 Robot production cell with additional guard door ...71
7.4 Rotary table system .. 72
7.5 Machine tool .. 73
7.6 Safely limited speed (SLS) with standard FI ... 74
7.7 Safely limited speed (SLS) with safety FI ... 75
7.8 Muting ... 76
7.9 Two-hand control .. 76
7.10 Configurable switching device .. 77

8 Role of embedded software for application programming ��79
8.1 Role of the SRESW of a safety-related control system ... 79
8.2 Evaluation of the SRESW of a standard controller .. 79

9 Use of standard controllers for SRASW ��81
9.1 Determining the necessary measures for fault avoidance .. 81
9.2 Single-channel architectures .. 81
9.3 Two-channel architectures .. 81
9.3.1 Characteristics of diverse SRASW .. 81
9.3.2 Two channels with identical, homogeneous SRASW .. 81
9.3.3 Two channels with diverse SRASW ..82
9.3.4 Only one channel with SRASW ..82
9.4 Application of the IFA matrix method to standard components ..82
9.5 Use of standard components for measures for fault control ...82

10 Typical test and monitoring measures in SRASW��� 83
10.1 Typical techniques for testing and monitoring ... 83
10.2 Boundary conditions for test and monitoring measures ... 83
10.3 Test frequency ..84
10.4 Further information ..84

11 Combinations of multiple parts of a control system with software ��85

12 Validation of SRASW��� 87
12.1 General requirements for validation ..88
12.1.1 Validation by analysis and tests ..88
12.1.2 Validation plan ...88
12.1.3 Information for validation ...89
12.1.4 Protocol of validation ...89
12.2 Special requirements for the validation of SRASW ...89
12.2.1 Documentation analysis ...89
12.2.2 Software test ..90
12.3 Validation example from DIN EN ISO 13849-2, Annex E ..90

13 Technical documentation and user information ��91
13.1 Technical documentation ... 91
13.2 User information .. 91

14 SOFTEMA software tool for developing and testing SRASW ��� 93
14.1 What is SOFTEMA capable of? ... 93
14.2 How is SOFTEMA used? ... 93
14.3 SOFTEMA user interface ..94
14.4 Where can SOFTEMA be obtained? .. 95
14.5 How is SOFTEMA installed and executed? ... 95

15 Literature ��� 96

16 List of abbreviations ��� 98

9

1 Foreword

Institute for Occupational Health and Safety of the German
Social Accident Insurance (IFA)

Publication of the DIN EN ISO 13849-1 standard for control
systems [1] was followed swiftly by BGIA Report 2/2008,
“Functional safety of machine control systems” [2]. Like its
predecessor, the report generated strong demand. The 15,000
printed copies of the German edition were soon taken. Together
with further tools for application of the standard – the widely
used SISTEMA software application and the “PLC disc” calculator
– the IFA’s report considerably facilitates new strategies for
assessing and dimensioning the reliability of electronic and
programmable control systems. This strategy, which analyses
the probabilities of component failure, is enshrined in the
DIN EN 61508 series of basic safety standards [3] and is now
established in almost all sectors of industry, including machine
construction. The preceding DIN EN 954-1 standard [4], with its
purely deterministic requirements, has finally been replaced.
The performance level is now firmly established in machine
construction.

The reports and tools referred to above primarily deal with
random failures of control systems, i.e. component defects and
wear. However, even when very reliable hardware is used, a
modern control system can still fail if care was not taken during
development of the application software, such as the PLC
program of a safety PLC. Lack of diligence in this area can lead
to systematic faults and dangerous failure of safety functions
during operation. The normative requirements for application
software are however formulated in general terms, and
published examples and guidance for their specific application
in practice were for a long time difficult to obtain.

For this reason, the IFA also began work some years ago on the
topic of “application software”. In addition, a valued partner
capable of implementing the normative perspective suitably in
practice was found in the person of Professor Norbert Becker at
the Department of Electrical Engineering, Mechanical Engineering
and Technical Journalism at Bonn-Rhein-Sieg University of Applied
Sciences. Between 2011 and 2013, Project FF-FP0319 concerning
standards-compliant development and documentation of
safety related application software in manufacturing system
engineering [5] was successfully completed by Professor Becker,
his laboratory team and numerous partner bodies from the
machine construction sector, with funding from the DGUV (and
thus also from the individual German Social Accident Insurance
Institutions). It was intended from the outset that the research
report would be published as the core part of the present IFA
Report with the inclusion of numerous software examples.
Professor Norbert Becker has since presented these research
results in numerous lectures and company visits. In the process,
he has prepared the ground for this report, for which we are
grateful. The IFA matrix method described in this report is the
result of project work by Becker et al.

Like those before it, this report is intended as a tutorial
and a reference work for persons developing application
software. It goes without saying that the report is not a
substitute for application of the standards. However, the
IFA considers the matrix method described here to be an
appropriate implementation of the normative requirements.
These requirements are very similar in the current standards
addressing functional safety in the machinery sector, and this
will probably remain so in the future. The IFA matrix method
could therefore be applied to good effect with respect to all
standards.

The report also contains valuable information on relevant
aspects of safety-related application software for machinery
control systems. As a follow-up to this report, the IFA is making
its free “SOFTEMA” software application available. SOFTEMA
is also a user-friendly solution for viewing and understanding
the examples in the report. My hope is that like SISTEMA,
this tool and the IFA matrix method will become an accepted
independent standard by means of which machine control
software can be specified, documented and validated reliably
and efficiently.

Professor Dr Dietmar Reinert
Former Director of the IFA

Bonn-Rhein-Sieg University of Applied Sciences

There is little to add to Professor Dietmar Reinert’s foreword.
The focus below lies on the history of the IFA matrix method,
its application in industry and its technical aspects. How
did project FF-FP0319, concerning standards-compliant
development and documentation of safety related application
software in manufacturing system engineering [5], which was
kindly funded by the DGUV, come about?

For some time now, the author of this foreword has been
addressing the application of modern safety technology in
machine construction and in the process engineering industry.
The key points were covered in Automation Technology lecture 2
at the university, as this was considered essential for preparing
students for the modern industrial world. Conventional auto-
mation technology and modern safety technology have now
coalesced.

Furthermore, cooperation with the IFA has been close for many
years. In particular, Dr Michael Huelke recognized the continued
benefit in providing industry with support in implementing the
requirements of DIN EN ISO 13849-1 [1] with regard to safety-
related PLC application software. This was the IFA’s motivation
for launching the funded project referred to above and for the
sub-department of automation technology at Bonn-Rhein-Sieg
University of Applied Sciences to conduct it.

10

1 Foreword

One key objective of the author was for the results of the project
to be suitable for direct implementation by industry. Academic
vanity was to have no place in the results. For example, it is not
practicable to model a machine as a finite automaton in order to
be able to generate test cases from it when PLC safety software
is implemented in a completely different way. For this reason,
it was decided from the outset to create a user group through
which local machine construction companies would be involved
in the project, thereby enabling their current practices to be
analysed, real-case examples from industry to be acquired, and
results suitable for direct implementation obtained. We would
once again like to thank Kautex Maschinenbau, Hennecke and
Kuhne Anlagenbau and the IFA (Dr Michael Huelke). The VDMA,
manufacturers (Siemens, Pilz, SICK) and the German Social
Accident Insurance institutions were involved through a steering
committee. The VDMA also facilitated presentation of the IFA
matrix method at a user workshop on 8 November 2012. For this,
too, I would like to express my thanks. I would also like to thank
Manfred Eggeling Dipl.-Ing. (FH) for his detailed work on the
project.

The IFA matrix method is not entirely new, and is already being
applied in modified form in some parts of industry. A matrix
lends itself to presenting safety-related switching processes
clearly. The result is a very clear definition of all switching
operations. Furthermore, this description can also be used
directly as a basis for tests during validation, which avoids
duplication of effort. Where required, additional test cases
can easily be added. Can this description now also be used for
specification of the safety-related PLC application software?
Since all safety-

related switching processes are described by the matrix, the
answer is clearly “yes”. One key to the solution is that the
safety-related PLC application software can always be structured
in three parts: the inputs stage, the processing stage and the
outputs stage – and that the first and last of these are already
known; only the processing stage is unknown, and it can be
specified easily by means of the IFA matrix method. The method
presented in this report enables all present and probably
all future normative requirements to be met elegantly. Put
very simply, the normative requirements state that the path
from definition of the safety functions to their verification,
implementation and validation is to be structured and its details
are to be comprehensible. An important milestone on this path
is the software specification. If this milestone is rejected by
users (you programme immediately!), there is no way of verifying
(checking) the program code against the safety functions and
against the software specification. The normative requirements
would not then be satisfied.

The project describes the IFA matrix method by means of
numerous examples set out in Excel® tables. This is of course
very rudimentary. In 2017, the IFA made the free SOFTEMA
software tool available, thereby making the method easy to
apply. Dr Michael Huelke played a major role in driving SOFTEMA
forward and implementing it. All project examples are also
available for SOFTEMA.

Professor Dr Norbert Becker
Sub-department of automation technology, Department of
Electrical Engineering, Mechanical Engineering and Technical
Journalism, Bonn-Rhein-Sieg University of Applied Sciences

11

2 Introduction

Manufacturers of machinery are increasingly using application-
specific programming of safety controls to implement safety
functions. At one time, the requirements concerning
the development of safety functions were defined in
DIN EN 954-1 [4]. By the late 2000s, however, this standard
had ceased to reflect the state of the art, and it was replaced
by DIN EN ISO 13849-1 [1] and DIN EN 62061 [6], either of which
can be applied. The new standards include definitions of
requirements concerning the development of software employed
for safety functions. These requirements are intended to prevent
hazardous systematic errors in the application software used in
a machine. How these new requirements are to be implemented
in detail is not clear to the software developers of safety
functions. This is partly because, by their nature, requirements
in standards are formulated only in very general terms, and
up to now virtually no examples of implementation have been
published.

2�1 Software quality requirements

Like no other technology, software assumes greater
responsibility than ever before. This naturally also applies to
those programming it. A key new aspect of DIN EN ISO 13849-1
was the formulation for the first time of requirements
concerning software for programmable control systems and the
development of such software. The requirements in Section 4.6
of the standard enable safety-related application software to be
developed for machinery control systems up to the highest risk
level with the required performance level of PLr e, i.e. including
for hazardous machines such as presses or cutting machines.

Software completely without errors unfortunately does not
exist in the real world. In contrast to hardware faults, which
occur as a result of random component failure, the causes of
software faults (errors) are systematic. It is therefore all the more
important that all reasonable steps be taken for errors to be
avoided during the development of safety-related application
software, the purpose of which is, after all, that of minimizing
risks. What is considered reasonable is geared firstly to the
required performance level PLr, and thus to the risk arising. At
the same time, safety-critical errors are known to creep in during
certain particular phases of software development, where they
remain undetected until they cause a failure in operation of
the machine, with particularly devastating effects. The phases
of a machine’s life in which this occurs are known to be those
of specification, software design and, over the operation
time, modification. The requirements of DIN EN ISO 13849-1
are therefore aimed in particular at error avoidance in these
phases, as is the IFA matrix method presented here. Sadly, little
attention is often paid in practice to these phases of application
programming.

2�2 The DGUV’s FF-FP0319
research project

In FF-FP0319 concerning standards-compliant development
and documentation of safety related-application software in
manufacturing system engineering [5] (2011-2013), the project
partner, Professor Dr Norbert Becker (Bonn-Rhein-Sieg University
of Applied Sciences), developed several specific procedures for
implementing the requirements set out in the new standards
concerning the development of safety-related software for
machinery, and evaluated and documented these procedures
with reference to industrial examples. The aim was to describe
both the procedures and their application in a research report,
which was then to be made available to the public as part of the
present IFA Report.

Two committees were formed for evaluation of the project
results during the project term:

• A user group, comprising local industrial companies (Kautex
Maschinenbau, Hennecke, Kuhne Anlagenbau), the IFA and
the TÜV Rheinland Academy

• The research support group, comprising control system
manufacturers (Pilz, SICK, Siemens), German Social Accident
Insurance Institutions, the IFA, the German Mechanical
Engineering Industry Association (VDMA), TÜV Rheinland
Academy, the Commission for Occupational Health and Safety
and Standardization (KAN) and users

• The method was also presented and discussed at a number of
industrial companies.

The project was divided into the following tasks:

• Development of a method

• Subsequent presentation of the method and evaluation of it
by the user group and the research support group

Several methods for the specification of application software
were studied:

• Description of application software as a finite state machine

• Specification by means of checklists

• Specification by means of tables/matrices

Describing the application software of a real-case machine
as a finite state machine [7] in which all operating states are
considered is generally a very complex process. Furthermore,
the subsequent programming of the application software is
completely different from its representation as a state machine
in a graphical or text-oriented programming language. This

12

2 Introduction

particularly applies to safety-related software, in which the use
of certified function blocks is the norm. Procedures in which
finite-state machines are described are not common in machine
construction. By contrast, finite-state machines are used in the
specification of complex safety-related function blocks (library
modules) [8], which however was not the primary topic of this
research project.

A checklist-based method was also developed. In this method,
the safety functions are described by forms based upon
checklists. These forms are progressively refined in the course
of further specification. Following the demonstrations in the
user group and the research support group, it soon became
evident that the checklist-based method was also unsuitable
for developing and documenting safety-related software in
an industrial context. Many companies are however already
documenting and specifying safety-related software in the form
of tables. Based upon this activity, a matrix-based procedure
for specifying and documenting safety software was developed.
This met with much greater acceptance when presented to
industry.

This procedure, described below as the “IFA matrix method”,
was received positively by the user group and the research
support group. The discussions resulted in numerous
improvements to the presentation. Several examples were
developed in this form of presentation, in order for as many
cases relevant to practice as possible to be described. In
addition, an example of a machine tool on a large scale was
implemented, in order to demonstrate the suitability of the IFA
matrix method for describing larger installations.

The IFA matrix method was presented, as an interim result of
the project, to the public at the VDMA workshop on functional
safety/safe application software in machine construction,
held on 8 November 2012 in Frankfurt. The project team also
subsequently issued several publications [9] and conducted
numerous demonstrations in companies. These met with a
largely positive reception and resulted in further constructive
suggestions.

2�3 The purpose of the present
IFA Report

The IFA matrix method presented here can be used for
standards-compliant specification and documentation
of application software for safety functions. Provided the
procedure shown in the example here is followed, it can be
assumed that the relevant requirements of DIN EN ISO 13849-1
concerning the safety-related application software (Section 4.6)
for the safety functions are met.

Other methods with which the requirements can be met equally
well doubtless exist besides this procedure. The IFA matrix
method therefore lays no claim to being the only means of
satisfying the requirements of the standards.

Application programming for standard controls typically entails
greater effort than for certified safety controls. Several chapters
of the report refer only to the application of standard controls,
and are marked accordingly.

In addition to application of the matrix method, further details
must be specified and checked in individual cases, such as:

• Manufacturer-specific parameterization of the peripheral
devices used (e.g. variable-frequency drives, sensors)

• Further safety-related functions of the machinery control
systems that are not covered by the IFA matrix method

• Additional miscellaneous functions that are not directly
relevant to safety, such as special acknowledgement
philosophies

13

3 Standards and the Report: an overview

DGUV project FF-FP0319 [5] and the present report address
implementation of the requirements of the DIN EN ISO 13849
series of standards, comprising two parts [1; 10], these being
the standards primarily applied in the machinery sector.
Further applicable standards also exist, however. Of these,
DIN EN 62061 [6] is also harmonized under the Machinery
Directive. DIN EN 62061 is limited to electrical, electronic and
programmable electronic systems; its suitability for many
machines employing hydraulic and pneumatic parts of a
control system is therefore limited. However, Section 6.11.3 of
DIN EN 62061 formulates similar requirements and procedures
for application software to those in DIN EN ISO 13849-1. For
application software, the scope of the two standards is similar
for control systems up to the highest safety integrity level for
the machinery sector (up to PL e or SIL 3). The committees
responsible for the two standards have now also examined
the equivalence of the requirements and documented this
equivalence in their joint report, DIN ISO/TR 23849:2010 [11].
The requirements vary in their details: as a sectoral standard
of the DIN EN 61508 [3] series, DIN EN 62061 describes the
management of functional safety very comprehensively, for
example.

The IFA recommends the procedure described in this report
expressly only with regard to compliance with the requirements
of the initial version of DIN EN ISO 13849 and its Amendment 1.
Nevertheless, this procedure may also be borderline suitable for
DIN EN 62061.

3�1 Software categories and
language types

Safety-related software is a specific part of the software of a
system (in this report, a machine, as shown on the right in
Figure 1) that is used to execute safety-related control functions
(in this report: safety functions) in a safety-related system (in
this report: parts of a control system of a machine). This safety-
related software takes several forms in terms of software types
and programming languages. In this respect, the definitions of
DIN EN (ISO) 13849 and 62061 are still largely consistent with
each other.

Two types of software languages are defined in the standards:

• FVL: full variability language, see DIN EN ISO 13849-1 [1],
Section3.1.35

FVLs are a type of language with the ability to implement a
wide range of functions. Examples are C, C++, Assembler. A
typical example of systems for the use of FVLs are embedded
systems (see below). In the field of machinery, FVLs are
used in embedded software and occasionally in application
software.

Figure 1:
Relationship between software languages, software types and the standards to be applied. Asm = assembler

14

3 Standards and the Report: an overview

• LVL: limited variability language, see
DIN EN ISO 13849-1 [1], Section 3.1.34

LVLs are a type of language with the ability to combine
predefined, application-specific library functions to
implement the specification of the safety requirements.
Typical examples of LVLs (ladder diagram, function block
diagram) are stated in DIN EN 61131-3 [2], the standard for
PLCs. Programmable logic controllers (PLCs) are a typical
example of a system employing LVLs.

Distinction is made as follows between software types:

• Safety-related embedded software (SRESW): see
DIN EN ISO 13849-1 [1], Section 3.1.37

This is software that is supplied by the control system
manufacturer as part of the system, and cannot be modified
by the user of the machine. SRESW is usually written in an FVL.
Typical examples are firmware, operating systems, runtime
systems, etc.

• Safety-related application software (SRASW): see
DIN EN ISO 13849-1 [1], Section 3.1.36

This is software implemented in the machine by the
manufacturer specifically for the application. It typically
contains logic sequences, limit values and expressions for
processing and controlling the relevant inputs, outputs,
calculations and decisions in order to meet the requirements
of the safety-related part of a control system. A typical
example is the PLC program of a safety PLC. SRASW is usually
written in an LVL.

• Parameterization software: some safety-related parts
of a control system require additional parameterization
for application. Examples are frequency inverters with
integral speed monitoring (SLS), for which the monitored
speed must be entered. The part of the control system is
usually parameterized by the user by means of dedicated
parameterization software provided by the part supplier.
This parameterization software also generates its own
documentation.

Safety-related parameters may also be input by means of
project-specific solutions, such as a standard control device.
In these cases, however, control system users themselves
must ensure that parameterization is free of errors, and
normative requirements of DIN EN ISO 13849-1 [1], Section
4.6.4 must be met.

The standards to be applied and thus the requirements
applicable to software development depend on the type of
programming language used (LVL or FVL) and the type of
software (SRASW or SRESW) (see Figure 1).

This report focuses on application software of the LVL type and
typically programmed in a PLC language (Figure 1 above). The
requirements of DIN EN ISO 13849-1, Section 4.6.3, are therefore
relevant. This report therefore uses the normative abbreviation
SRASW for this application software.

Owing to the higher probability of systematic errors, SRASW
programmed in an FVL, such as C, is treated according to the
standard (DIN EN ISO 13849-1, Section 4.6.2) in the same way as
embedded software.

The simplified V-model described in Section 4.6.1 of the
standard is to be used as the development model for both
SRESW and SRASW (see Section 5.2 of this report).

3�2 Requirements concerning safety-
related application software
(SRASW)

The development process is outlined in Section 4.6.1 of
DIN EN ISO 13849-1. The normative requirements for SRASW
for the software itself, the development tools used and
the development activities are described in Section 4.6.3.
These requirements also contribute to the fault avoidance.
The overhead should be commensurate with the required
risk reduction, analogous to that for the hardware of
the programmable SRP/CS. The requirements and their
effectiveness therefore increase accordingly with rising PLr of
the implemented safety function(s). DIN EN ISO 13849-1 thus
states no maximum requirements which would be necessary
for all items of software, irrespective of the PLr. Figure 2 shows
that a suitable package of basic measures exists in the first
instance for all PLr for SRASW (as for SRESW). The following basic
measures described in Chapter 5 are already required for the
development of software for PLr a or b:

• Development life cycle with verification and validation
(Section 5.2)

• Specification of the safety requirements (Section 5.6)

• Documentation of specification and design
(Section 5.12)

• Modular and structured programming (Section 5.7)

• Functional tests (Section 5.10)

• Suitable development activities following modifications
(Section 5.14)

For software employed for PLr c to e, the basic measures are
supplemented by additional measures for fault avoidance. The
latter are required for PLr c with lower effectiveness, for PLr d with
medium effectiveness and for PLr e with higher effectiveness.
Irrespective of whether the software now acts in only one or in
both channels of a desired category, the PLr of the implemented
safety function(s) is always the yardstick for the requirements
(see Section 4.3).

The aspect of increasing effectiveness refers to the increasing
effect of fault avoidance. This will be illustrated here by the
important task of “specification”. For PLr c, for example, it
may be sufficient for programmers to write the specification
themselves and to cross-check it themselves later. Should the

15

3 Standards and the Report: an overview

same software be employed for PLr e, however, a higher level of
fault avoidance must be attained. It may then be necessary for
the specification to be written by the software project manager,
for example, rather than by programmers. In addition, the review
of this specification could also be performed jointly by the
programmer and an independent person, such as the hardware
engineer. More eyes (generally) detect more errors.

Unfortunately, at the time of publication of this report, the
authors are not aware of literature concerning forms of
requirements with greater or poorer effectiveness. Each party
applying the standard is therefore responsible themselves for
specifying the form by which the requirements are met.

The normative requirements cited here are presented as part of
the IFA matrix method and commented on for each project in a
separate document, A4 – Requirements (see Section 5.5).

Figure 2:
Grading of the requirements for safety-related software (DIN EN ISO 13849-1)

3�3 Further informative content of
DIN EN ISO 13849-1 concerning
SRASW

In addition to the normative requirements referred to above,
Part 1 of the standard contains further relevant content in the
informative Annexes G and J. In this context, “informative”
means explanations of the text of the standard, which in
places is abstract in nature. The explanations reflect how the
standard developers regard the standard: as a guide to typical
implementation, which is to be considered as state of the art.

3�3�1 Annex G: Systematic failure

Errors in SRASW can lead to systematic failures. Informative
Annex G discusses this type of failure. However, it essentially
refers to control hardware, as the control software is already
described in full in the normative Section 4.6.

A distinction is drawn in this annex between the avoidance
of systematic failures and their control. Section G.2 specifies
a failure control measure employing program sequence
monitoring to detect faulty program sequences. In the case
of a certified safety PLC, this monitoring is typically present
in the firmware, where for example it detects a faulty SRASW
sequence. In a standard control system, this measure would
have to be reliably implemented in the SRASW itself.

Only the standard measures of functional testing, project
management and documentation are referred to as measures
for fault avoidance specific to integration of the control system
(refer also to Chapter 5 of this report).

3�3�2 Annex J: Software

Figure J.1 in the informative Annex J begins by using a software
example to illustrate the modularized three-stage structure
employing function blocks: “acquisition of sensor data”,
“processing [of the sensor data]” and “actuation of actuating
elements”. This design principle is implemented by the IFA
matrix method (Section 5.7).

Table J.1 of the annex shows an example compilation of activities
and documents for application of the V-model. These activities
and documents can also be found in the IFA matrix method.

“Verification of the software specification” in the annex
addresses this aspect in detail. The annex evidently assumes
that a software specification has been set out in text form.
Specifications in text form easily give rise to omissions,
inconsistencies and misinterpretation. This contrasts with
the IFA matrix method, in which formal verifications are also
possible in the tabular presentations.

The final part of Annex J contains examples of programming
rules.

16

3 Standards and the Report: an overview

 Such actual examples are rare, particularly since these rules
relate in fact to SRASW.
 The programming rules are documented and verified in the IFA
matrix method in Table A3, “Measures” (example: see Table 9 in
this report).

3�4 Relevant normative content
of DIN EN ISO 13849-2:2013
concerning SRASW

Following development of the SRASW in accordance with
DIN EN ISO 13849-1, it is validated in accordance with Part 2
of the series of standards [10]. Validation comprises several
steps during and at the end of the development process. It is
regarded as proof of suitability for purpose, specifically with
respect to the actual application scenario. The safety-related
parts of the machine control system are therefore examined
by means of analyses and tests for their compliance with the
safety requirements specified for them. The IFA matrix method
also contains validation elements, by which it implements the
relevant requirements of DIN EN ISO 13849-2. With the exception
of Section 9.5, “Validation of safety-related software”, Part 2 of
the standard makes no further direct reference to SRASW. The
aspects of SRASW validation are dealt with in Chapter 12 of the
present report.

DIN EN ISO 13849-2 also provides, in the form of a “toolbox”, a
comprehensive list of measures that are to be applied to prevent
systematic failure, such as the observance of basic safety
principles and well-tried safety principles. The following safety
principles for electrical systems can be applied to SRASW (from
Annex D of the standard):

• Avoidance of undefined states: undefined states in the
SRP/CS are to be avoided. The control system is to be
designed such that its state, e.g. the outputs, can be
predicted during normal operation and under all anticipated
operating conditions.

• Direction of failure: wherever possible, all devices/circuits
should fail to the safe state or condition.

• Reduction of possible faults: separation of safety-related
functions from other functions.

• Balance between complexity/simplicity: a balance should be
struck between the complexity of the equipment, by which
better control is achieved, and simplicity of the equipment, by
which its reliability is improved.

Part 2 also contains Table D.21, Faults and fault exclusions
– Electronic components – Programmable and/or complex
integrated circuits, with the statement that no fault exclusion
can be made for faults in all or part of the function including
software faults. Practical experience confirms this provision.

Annex E of DIN EN ISO 13849-2:2013 provides a concrete
example of validation of a programmable control system, but
without validation of the application software (refer to the
comment in Annex E.1 of the standard). This example validation
of the application software is presented in Section 12.3 of the
present report.

17

4 Risk assessment and safety functions

This chapter describes how the safety functions and the scale of
requirements for SRASW relating to fault avoidance are derived
from the risk assessment.

4�1 Safety functions for risk reduction

DIN EN ISO 13849-1 is applied when a control system-based
protective measure – the safety function – is to be designed and
evaluated as part of risk reduction on a machine. Along with
the control hardware and the embedded software, the SRASW
also contributes to risk reduction, through the program imple-
mented for the safety functions. Development of the SRASW can
thus be regarded as part of risk assessment in accordance with
ISO 12100 [13] and national and European primary and secon-
dary legislation. The risk assessment process has already been
described in BGIA Report 2/2008 [2], Chapter 5 and Annex A.

4�2 Definition of safety functions and
their properties

Correct and complete definition of the safety functions and
their properties is a prerequisite for creation of the SRASW, and
thus for application of the IFA matrix method. Description of
this process lies beyond the scope of this report; the reader is
therefore referred to SISTEMA Cookbook 6, Definitions of safety
functions [14] and to BGIA Report 2/2008 [2], Chapter 5 and
Annex A. The outcome of this definition is the specification for

the safety functions, which serves as the input document for the
matrix method.

4�3 Influence of the risk assessment
on software development

How are the normative requirements for SRASW now selected?
DIN EN ISO 13849-1 [1], Section 4.6.3 states: “For SRASW for
components with PLr from a to e, the following basic measures
shall be applied”, followed by “For SRASW for components with
PLr from c to e, the following additional measures with increa-
sing efficiency […] are required or recommended.”

It thus follows that the requirements are based on the PLr of the
implemented safety function and not on the PL (in the sense
of component property) of the part of the control system used.
If, therefore, a safety PLC (part 2 of the control system) with a
typical PL of e is specified, as for example in Figure 3, it does not
follow that the SRASW must necessarily also be developed with
the highest requirements for PLr e. If this safety PLC is used to
implement safety functions with a lower PLr of c (medium risk;
for safety function 2), the quality of the SRASW used on this
PLC and therefore the requirements for its PLr of c are then also
sufficient.

Note: In Figure 3, the SRASW implements the two safety func-
tions 1 and 2. The PLr for the two safety functions differ (a and c).
As the PLr of safety function 2 is the higher of the two, it determi-
nes the requirements for the SRASW.

Figure 3:
Example of derivation of the requirements for SRASW

18

4 Risk assessment and safety functions

4�4 Influence of the software structure
on software development

In most cases, multiple safety functions, quite possibly differing
in their PLr are implemented on a programmable controller.
In theory, each safety function of the SRASW can then also be
developed against different quality requirements according to
its PLr. However, this distinction is hardly practicable for typical
SRASW, for which the IFA matrix method can be used. In this
context, DIN EN ISO 13849-1 states in Section 4.6.3:

“If a part of the SRASW within one component has any impact
(e.g. due to its modification) on several safety functions with
different PL, then the requirements related to the highest PL shall
apply.“

How can it be demonstrated in a particular case that parts
of the SRASW do not mutually influence each other and that
different requirements within the SRASW therefore do apply?
In such a case, the following must then be demonstrated and
documented:

• The individual safety functions are independent of each other,
both spatially and temporally, or

• Any violation of this independence is controlled

The reasoning for this independence must be documented. Typi-
cal characteristics for the independence of software modules
and the technologies employed are described in Section 5.9.

In the first instance, the IFA matrix method is to be applied inde-
pendently of the PLr. In the interests of simplification, technolo-
gies and measures for fault avoidance are selected and applied
according to the highest PLr of the safety functions under analy-
sis. This is supported by the SOFTEMA tool (Chapter 14).

4�5 Influence of the software structure
on software development

Figure 3 shows that the PL for the entire combination of the three
parts of a control system is always derived from two aspects:

• The reliability of the hardware: in this example, this results in
a PL derived from the combination of the three parts of a con-
trol system with PLs of d/e/d. This yields an overall PL of d for
the hardware in this example.

• The reliability of the software: assuming that the SRASW of
parts 2 and 3 of the control system were to be developed
against the requirements for a PLr of c (i.e. would no longer
satisfy PLr d), the result would be the following situation
for the safety function: PLhardware d with PLsoftware c, resulting
in a downgrade to an overall PL of c owing to the “poorer”
software.

Should it subsequently transpire in this example that a further
safety function with a higher PLr d needs to be implemented,
this may have consequences for the application programs that
have already been implemented. Owing to the requirement cited
above, if the software safety functions are not separated from
each other, they may all require “uprating” at a later stage. For
this reason, the quality objective, i.e. the PLr specified for soft-
ware development, should not be selected too narrowly. In the
example in Figure 3, it would be advantageous for the software
quality also to attain a PLr of d, consistent with the hardware
quality. This would enable a safety function with a PLr of d to be
added at a later stage without major overhead.

19

5 Measures for fault avoidance

When failures occur in a control system during operation,
they are caused either by random faults resulting from ageing
or physical phenomena, or by systematic faults that arose
before commissioning, e.g. specification, implementation or
manufacturing faults. In application software, only systematic
faults occur. Should these systematic faults have negative
consequences during operation, measures in the embedded
software for the control of faults (e.g. cycle time monitoring by
means of a hardware watchdog) may be able to bring about a
safe state. However, it is better to prevent systematic faults from
occurring in the first place. Measures for fault avoidance are
used for this purpose during software development. This chapter
describes and comments on the most important measures
and techniques for this purpose set out in DIN EN ISO 13849-1.
The following section first describes the typical procedure for
combined project planning of control hardware and software.

5�1 Typical project procedure

The risk reduction process must consider a machine’s entire
life cycle. This includes the process for development of safety-
related control systems. For safety-related software, this process
is in fact defined very specifically by the “V-model” (Sections
5.2 to 5.5 of the present report). The sections from 5.6 onwards
present further fundamental development aspects within the
V-model for SRASW.

By definition however, software is always used in conjunction
with control hardware to implement complete safety functions.
The standard does not explicitly state how this combined
development of hardware and application software with their
resulting mutual influences should be performed. This section
presents a bold description of a possible project process for the
implementation of safety functions. Figure 4 shows an overview
of the typical project steps.

Since the focus lies on implementation of safety functions, the
sequence plan begins with specification of these functions.
The system’s design data and the specification for the safety
requirements for the machine as a whole (often referred to as
the safety concept) form the basis for the specification of the
safety functions. This also includes the A2.1 System sketch.
All document types referred to here, i.e. Ax.x, Bx.x, etc., are
described in more detail in Section 5.5.

The project process is then divided into a hardware-oriented
and a software-oriented branch. The documents required for
application programming, A to D and V1, are highlighted in
yellow. The additional documents generated during hardware
design, which are not described in further detail by way of
examples in this report, are highlighted in pink.

Development of safety-related parts of a control system begins
with specification of the safety functions (document A1).
Based on this specification, the circuit diagram (document
A2.2), the system structure (document A2.3) and the I/O list
(document A2.4) are created during hardware design. This is
followed by calculation of the performance levels of the safety
functions (document P1), for example by means of the IFA
SISTEMA software [15] (refer also to BGIA Report 2/2008 [2]).
Hardware planning is then verified against the specification
of the safety functions (document V2). The verified hardware
design documents form the basis for assembly. Assembly is
checked and the result documented (document Q1).

The specification for the safety functions (document A1) and
the hardware design documents A2.1 to A2.4 also form the
basis for software planning. The catalogue of measures for fault
avoidance, the tools and programming rules (document A3) and
normative requirements (document A4) are also available and
serve as planning information. The following documents are
generated during software planning: safety program architecture
(document B1), standard program architecture (document B2),
modular architecture (document B3) and safety-related software
specification with validation plan (document B4). These
documents must then be verified against the specification
for the safety functions (document V1). This is followed by the
programming phase and checking of the program code during
the code review (document C1). Some of the documents stated
are optional.

Following inspection of assembly and review of the code,
the hardware and software can be tested (documents D1 and
R1). This is protocoled in test documents. It is followed by the
overall validation, which is not shown separately in Figure 4.
The individual verifications and tests should preferably be
carried out by a second person with relevant qualifications, in
accordance with the two-man rule (Section 5.15).

20

5 Measures for fault avoidance

Figure 4:
Typical sequence plan for planning of projects involving programmable control systems

bb bbbb

bb

Software design

 Verification of the
 hardware design

Verification of the
software design

 Assembly

Document P1
Calculation of the
safety functions

Document Q1
Protocol of testing
of assembly

Document C1
Protocol of the code review

 Tested machine

Code review

Documents A1, A2, A3, A4
A1 Specification of the safety functions,
A2 Spezification of the hardware,
A3 Catalogue of measures for fault avoidance,
 tools and programming rules,
A4 Requirements

Dokument A1
Specifikation of the
safety funktions

Specification of the
safety functions

Hardware design

Document V1
Verification of
the B documents

Document V2
Verification of the
hardware design

 Testing of assembly*

Coding

Documents B1, B2, B3, B4
B1-2 Software architecture, B3 Modular archi-
tecture, B4 Safety-related software specification

Document A2
Specification of the hardware,
A2.2 Circuit diagram, A2.3
System structure, A2.4 I/O list

Document D1
Protocol of software validation

Document R1
Protocol of
overall validation

* The I/O test forms part of software validation

Document A2.1
System sketch

5�2 V-model development model

In the area of functional safety, the V-model presents a
development process for safety-related software. It is consistent
with several standards. It has existed for some time, having
been introduced into software engineering by Boehm in
1979 [16]. The IEC 61508 series of basic safety standards has
adopted this model and presented it in very detailed form.
This was necessary, since the scope of this basic standard is
unavoidably very broad: it extends from simple control devices
for a manually guided machine to highly complex process
control systems for process engineering plants. The latter
require this level of detail in the development model.

However, where dedicated parts of a control system with
integrated development environments – such as safety
PLCs – are used in the machinery sector, the complex form

of the V-model taken in IEC 61508 can be simplified. The
“software architecture” phase can be omitted from application
programming, as the software architecture is already determined
by the control system’s operating system and development tool.
This could, for example, be an architecture compliant with the
relevant PLC standard (DIN EN 61131-3 [12]), implemented by
the control system manufacturer and certified by test bodies.
Accordingly, the “integration tests” phase relating to the
hardware can be omitted in the ascending, testing branch of the
V-model. The application programmer still has the task of testing
integration of the software modules with each other and within
the specified software architecture. This is also the background
to the “simplified V-model” in DIN EN ISO 13849-1, Section 4.6.1
(Figure 5).

21

5 Measures for fault avoidance

Figure 5:
The simplified V-model in DIN EN ISO 13849-1, Section 4.6.1

5�3 Description of the V-model

This section summarizes the requirements of DIN EN ISO 13849-1,
Section 4.6. A core requirement of the standard is that
development of safety-related application software is to be
carried out according to the simplified V-model (Figure 5).

Application of the V-model has two objectives:

• Avoidance of software faults (systematic faults)

• Development of readable, understandable, testable and
maintainable software

The V-model can be characterized as follows:

• The V-model consists of design (Figure 5, left, including
programming) and review activities, also termed “phases”
(Figure 5, right).

• The result of each design phase must be verified against the
specifications of the previous phase. The results are marked A
to H in Figure 5.

• Each design phase has a corresponding review phase. The
corresponding test plan has already been developed in the
design phase.

A Clean documentation of the software created during all
phases of the V-model serves to minimize errors in software
development. The specification and the software design must
be documented, to enable the program itself to be verified
at a later stage against this design. This specification is to be

accessible to all parties involved in software development. The
specification includes a definition of the safety functions in
which the required performance level PLr and the associated
operating mode are specified.

Programming should be modular and structured. Wherever
possible, use should be made of validated function blocks
provided by the manufacturer. During programming, great
importance should be attached to code being readable and
understandable. For this reason, symbolic variable names
should be used and programming guidelines observed (see also
Section 5.7). Understandable code makes testing of the program
easier, and is conducive to the avoidance of further software
errors during subsequent modifications.

Some requirements contained in the standard are met directly
by the certified PLC programming environments:

• Use of limited variability programming languages (LVLs)

• Separation of safety software and purely functional software

• Provision of validated function blocks

Should changes be made to the software, appropriate
development measures must be taken. This includes
documentation of all modifications, and an impact analysis.
The impact analysis can be used to estimate the overhead
required for the activities that must be repeated according to
the V-model. All modifications must be documented in a change
history.

22

5 Measures for fault avoidance

Verification comprises the analyses and functional tests for
SRP/CSs and their sub-aspects, which determine whether the
results attained in a development phase meet the specifications
for the phase concerned. For example, the code review
checks whether the application software complies with the
specifications for the measures for fault avoidance.

The purpose of software validation is to demonstrate that
the application software meets the specifications. Software
validation consists of analyses and functional tests (see
Chapter 12). The subsequent overall validation of the safety
functions (not shown in the V-model) also examines whether
the correct safety functions have been defined for the machine
(“Has the right thing been built?”).

Programmers who do not routinely develop safety-related
application software are likely to consider these requirements
tedious initially. However, they provide programmers with
certainty of having developed the software to an adequate
standard.

5�4 Simplification of the V-model for
typical SRASW

Development of application software in accordance with the
V-model as required by the standard can be simplified further
still. The dashed lines in Figure 6 show the areas that can be
grouped. These simplifications are subject to the boundary
conditions stated below. Safety-related application software

for machinery is usually created with a typical structure. It is
divided into a inputs stage, processing stage and outputs stage
(see Page 33). The inputs and outputs stages often make use
of certified function blocks provided by the control system
manufacturers in the form of libraries. Only the processing stage
of the function blocks of the outputs stage need be specified
and tested in more detail. The interconnection of all function
blocks with the other peripheral signals is clear and simple.
The system design is largely predetermined by this specified
structure. This is the reason why the first and last phases are
grouped, as the “system design“ and its corresponding test
phase, the “integration test“, are not required in practice.

It is also advantageous for development by machine
manufacturers of their own function blocks, where required,
to be placed in a separate V-model. These function blocks,
developed and validated in-house, are used in a later stage
during programming of safety functions and treated in the
same way as the library blocks provided by the control system
manufacturers.

Grouping in this way results in two small V-models: one for the
software development of complete safety functions, the other
for the software development of individual software modules
(function blocks) of SRASW (Figure 7). Individual software
modules must often be developed in an application where a
required functionality cannot be achieved by use of the library
modules provided by the controller manufacturer. In this case,
it is advantageous for this functionality to be encapsulated in a
function block within a library, thereby enabling it to be re-used
multiple times.

Figure 6:
The V-model with possible groupings (dashed lines)

23

5 Measures for fault avoidance

Figure 7:
Grouped V-models for safety functions (top) and modules (bottom)

5�5 Document types for the simplified
V-model

Where software is developed in accordance with a V-model, it is
practicable to define document types for the inputs and outputs
of the phases. In the IFA matrix method, the letters A to D and

V at the inputs and outputs of the phases in Figure 7 facilitate
traceability of these document types. In the V-model for module
development, the letter “M” is added in each case to avoid
confusion. Tables 1 and 2 define the document types for the two
V-models.

Table 1:
Document types for the V-model for software development of safety functions

Abbre-
viation

Document Comment

A1 Specification of the safety functions Present

A2.1 Specification of the hardware, system sketch Optional

A2.2 Specification of the hardware, circuit diagram Present

A2.3 Specification of the hardware, system structure Present

A2.4 Specification of the hardware, I/O list Present

A3 Catalogue of measures for fault avoidance, tools and programming rules Reusable

A4 Requirements Reusable

B1 Architecture of a safety program Not applicable for simple applications

B2 Architecture of a standard program Not applicable for simple applications, optional

B3 Modular architecture

B4 Safety-related software specification and validation plan

B5 Program sketch Optional

V1 Protocol of verification

C1 Protocol of code review

D1 Protocol of software validation

23

5 Measures for fault avoidance

Table 2:
V-model document types for software development of modules (function blocks)

Abbre-
viation

Document Comment

AM1 Interface definition and function description

AM2 Catalogue of measures for fault avoidance, tools and programming rules Reusable

AM3 Requirements Reusable

BM1 Module specification and test plan

BM2 Program sketch Optional

VM1 Protocol of verification

CM1 Protocol of code review

DM1 Protocol of module test

The documents that must always be created for a project, e.g. for
hardware design, are marked “present” in Table 1. “Reusable”
means that the document concerned can also be used in other
projects; it need not therefore be created again for each project.
In the present report, the optional documents are required for
comprehensible explanation of the procedure; in the project
itself, however, they can usually be dispensed with.

The documents are described briefly below:

• A1 – Specification of the safety functions: table of safety
functions showing important properties such as the required
performance level, response times, operating modes, priority,
etc.

• A2.1 – System sketch: broad overview of the system; may also
contain the design data

• A2.2 – Circuit diagram: electrical circuits, in particular for
safety-related components

• A2.3 – System structure: overview of the safety components
and their connection (topology showing the network)

• A2.4 – I/O list: list of all safety-related and where applicable
other relevant inputs and outputs, together with their
addresses and variable names; the I/O list also contains
check fields for the code review and validation of the software

• A3 – Catalogue of measures, tools and programming rules for
fault avoidance

• A4 – Requirements: listing of the normative requirements in
accordance with
DIN EN ISO 13849-1, Section 4.6.3, with project-specific
comments

• B1 – Architecture of the safety program: overview of the safety
program structure (call hierarchy of modules)

• B2 – Architecture of the standard program: overview of the
standard program structure (call hierarchy of modules)

• B3 – Modular architecture: overview of the modules used
(function blocks) with the interconnected inputs and outputs
and the logic signals for the processing stage

• B4 – Safety-related software specification and validation plan:
matrix-based specification of the software and test plan for
software verification and validation

• B5 – Program outline: presentation of the software, e.g. in
the function block diagram; usually corresponds to the future
program listing

• V1 – Verification protocol: not a document in its own right, but
check fields in documents B3 and B4, as these documents
must be verified against the specification of the safety
functions (A1)

• C1 – Protocol of code review: the software code must be
checked for errors by review. The verification steps are listed
and errors are to be documented in the protocol of code
review

• D1 – Protocol of software validation

For module software development:

• AM1 – Interface definition and function description:
description of the input and output variables of a module
(function block) and its function

• AM2 – Catalogue of measures, tools and programming rules
for fault avoidance

• AM3 – Requirements: list of the normative requirements of
DIN EN ISO 13849-1, Section 4.6.3, together with project-
specific comments

24

5 Measures for fault avoidance

• BM1 – Module specification and test plan: corresponds to B4.
Matrix-based specification of the function block with test plan
(possible only with simple function blocks)

• BM2 – Program sketch: presentation of the software, e.g. in
a function block diagram; usually corresponds to the future
program listing

• VM1 – Verification protocol: not a document in its own right,
but refers to check fields in document BM1, which document
verification of the module specification BM1 against the
function description AM1

• CM1 – Protocol of code review: the software code must be
reviewed for errors. The verification steps are listed and errors
are to be documented in the protocol of code review

• DM1 – Module test protocol: corresponds to D1. Protocol of
validation of a function block

5�6 Specification of safety
requirements and safety functions

Design and integration of safety-related parts of a control system
must be geared towards products being developed that are as
fault-free as possible and satisfy the safety requirements, and to
these products being used as intended.

The life cycle of the safety-related parts of a control system
(Figure 4) and thus of the SRASW begins with specification of
the safety requirements for a machine. Section 6.1.1, Box 6.1 of
BGIA Report 2/2008 [2] shows a general structure for a safety
requirements specification.

The specification of the safety functions forms part of
these safety requirements and is the first important
document for SRASW development (refer also to SISTEMA
Cookbook 6, Definitions of safety functions [14]). In addition
to specific aspects of various safety functions, Chapter 5 of
DIN EN ISO 13849-1 also lists general aspects that must be
included in such a specification as a minimum requirement.
Document “A1 – Specification of safety functions“ already
contains this information, and can be expanded to include
additional project-specific information. When the IFA’s
SOFTEMA tool (Chapter 14) is used, any changes and extensions
to specification A1 are inherited by the subsequent SRASW
development documents.

A specification of this kind sets out, at the beginning of the
development process (Figure 4), the framework for all parties
involved. It constitutes a set of requirements specifications;
in no way is it a product description produced following
development.

5�7 Programming guidelines

Code that is written must be readable and clear, in order to
facilitate testing and error-free modification at a later stage. This
is guaranteed by suitable and binding programming guidelines
and their observance during programming. The guidelines
should be the existing and accepted rules of a recognized
organization [8; 15; 17]. DIN EN ISO 13849-1, Annex J.4 also lists
examples of rules. Alternatively, a company can compile suitable
programming rules itself on the basis of these documents. In
2013, Promotional Committee 2 of PLCopen1 launched a further
initiative: the Software Construction Guidelines working group.
These guidelines are already available.

Programming guidelines govern the use of critical language
constructs, the scope and interfacing of software functions, the
formatting and commenting of the code, symbolic names of
functions and variables, etc. A separate table (document A3)
is provided in the IFA matrix method for presentation and
verification of the rules (for examples, see Section 6.5).

In an actual project, these generic rules are supplemented by
manufacturer-specific programming rules and configuration
measures addressing the particular features of the control
system family and software architecture used (for examples, see
Section 6.5).

5�8 Modular and structured
programming

Modularity and structuring are fundamental principles for the
avoidance and control of faults during the development of
software for safety-critical systems. For this reason, they are
specified as a basic measure by DIN EN ISO 13849-1, which also
provides a software architecture model in three stages: Inputs ->
Processing -> Outputs (Figure 8). These three stages are in turn to
be implemented in most cases by function blocks.

1 PLCopen is a global, non-proprietary and product-independent
organization for the automation industry (www.plcopen.org)

25

http://www.plcopen.org

26

5 Measures for fault avoidance

Figure 8:
General architecture model for software (to DIN EN ISO 13849-1:2007, Figure 7)

Inputs

Input blocks

Acquisition of information
from the various
safety sensors

via the safety inputs

Processing Outputs

Processing blocks

Required processing,
to realise the

safety functions that
lead to a safe state

Output blocks

Actuation of the
drive elements by

safety outputs

How then are these two principles defined? The reader is
referred here to the DIN EN 61508 [3] basic safety standard
series, Part 7 of which provides an overview of procedures and
measures and their definitions. From EN 61508:

Aim [of structured programming]: To design and implement the
program in a way that it is practical to analyse without it being
executed. The program may contain only an absolute minimum
of statically untestable behaviour.

The following principles should be applied to minimise
structural complexity:

• divide the program into appropriately small software
modules, ensuring they are decoupled as far as possible and
all interactions are explicit;

• compose the module software control flow using structured
constructs, that is sequences, iterations and selection;

• keep the possible number of paths through a software
module small, and the relation between the input and output
parameters as simple as possible;

• avoid complicated branching and, in particular, avoid
unconditional jumps (goto) in higher level languages;

• where possible, relate loop constraints and branching to input
parameters;

• avoid using complex calculations as the basis of branching
and loop decisions.

• Features of the programming language which encourage
the above approach should be used in preference to other
features which are (allegedly) more efficient, except where
efficiency takes absolute priority (for example some safety
critical systems. (DIN EN 61508-7:2011 [3])

The principle of modularization is superordinate and relates
more to the interfaces between the software modules:

Aim [of modularization]: To reduce complexity and avoid failures,
related to interfacing between subsystems.

Description: Every subsystem, at all levels of the design, is
clearly defined and is of restricted size (only a few functions). The
interfaces between subsystems are kept as simple as possible
and the cross-section (i.e. shared data, exchange of information)
is minimised. The complexity of individual subsystems is also
restricted. (DIN EN 61508-7:2011 [3])

These principles are assured when a PLC language is used
on a safety PLC in observance of appropriate programming
guidelines. With its three-stage structure and the use of small
software modules (function blocks), the IFA matrix method
promotes modularization and structured programming. The
processing functions (or processing stage, see Section 6.1)
should then also be broken down into individual modules, each
relating to an actuator (as shown in Figure 9).

27

5 Measures for fault avoidance

Figure 9:
Design of a software example (to DIN EN ISO 13849-1, Annex J))

Data acquisition
Sensor 1

Data acquisition
Sensor 2

Data acquisition
Sensor 3

Data acquisition
Sensor 5

Data acquisition
Sensor 4

Processing
function 1

Processing
function 2

Actuation of
drive element 1

Actuation of
drive element 2

Actuation of
drive element 3

Interface for
drive elements

Sensor
interface

5�9 Separation of safety-related and
non-safety-related software

An important aspect of the structure of safety-related application
software is its separation from the non-safety-related, functional
process software. The latter may be modified more frequently,
which should be possible without any dangerous impact on
the safety functions (and possibly the need for validation or
certification of the SRASW to be repeated). When certified
safety controls are used, this separation is usually assured.
The explanations below therefore primarily concern the use of
standard components.

DIN EN ISO 13849-1 [1] refers in Section 4.6.3 d) to the following
additional measure for fault avoidance:

“d) Where SRASW and non-SRASW are combined in one
component:

1) SRASW and non-SRASW shall be coded in different function
blocks with well-defined data links.

2) there shall be no logical combination of non-safety-related
and safety-related data which could lead to downgrading of
the integrity of safety-related signals, for example, combining
safety-related and non-safety-related signals by a logical “OR”
where the result controls safety-related signals.”

The purpose of these requirements is that software modules
must be executed independently of (or separately from) each
other, both spatially and temporally.

Temporal separation means that a module must not consume
excessive available processing time and thereby impair the
function of another module. Nor must it prevent execution

of the other module by blocking shared resources (memory,
semaphores, communication, etc.). This requirement must be
met by appropriate prioritization of the safety-related modules,
sufficient resources, static memory allocation, etc., and must be
monitored if necessary by measures for fault control (e.g. cycle
time monitoring).

Spatial separation means that the data used in a safety-related
module must not be changed impermissibly by another module,
and in particular not by a non-safety-related module.

When is spatial separation assured? What techniques are
typically used? Complete separation is not always possible,
such as where actuator energization signals from the process
software must be enabled in the SRASW. The options for
coupling software modules that are intended to be independent
are limited2. In such scenarios, the safety-related module must
always retain full control over actuators giving rise to a hazard:

• Interface coupling: the safety-related module or its data
is accessed only through subroutines of the module
implemented for this purpose (e.g. a demand for a drive to
be energized). The safety-related module alone decides what
response is to be taken to the demand.

• Data coupling via a parameter list: the safety-related module
or its data is accessed only through variables in the form of
parameters of a subroutine. Each read/write operation of
a variable can be recognized by the safety-related module
and processed further by it without giving rise to hazardous
situations.

2 For further information, see DIN EN 61508-3 (VDE 0803-3):2011
[18], informative Annex F, “Techniques for achieving non-
interference between software elements on a single computer”.

28

5 Measures for fault avoidance

The following forms of coupling are not recommended and
should be used only in exceptional cases and in observance of
the programming guidelines:

• Coupling through global data: safety-related modules employ
global data to which other modules also have direct access.
Understanding how the modules interact and assessing the
impact of changes to the code may present difficulties.

• Control coupling: coupling that grants the non-safety-
related module direct control over the safety-related
module, for example by transmitting a bit that is capable
of energizing a drive giving rise to a hazard. In this context,
DIN EN ISO 13849-1 states explicitly: “there shall be no […]
safety-related and non-safety-related signals by a logical
“OR” where the result controls safety-related signals.”

Two modules cease to be independent when their content is
linked. For code changes to be evaluated, both modules must
be understood. This means, for example, that:

• A jump occurs directly from one module to another

• One module influences the branch targets of another module

• One module is able to access the data of another module
directly

Correct coupling and module separation can be evaluated
only by a reading and understanding of the code, and must
be documented as part of the code review (see Section 6.8). If
sufficient separation from or independence of the non-safety-
related module cannot be verified, it must also be treated as
SRASW and included in the development process.

5�10 Functional test and expanded
test

With regard to validation, the requirements of DIN EN ISO 13849
Parts 1 and 2 concerning SRASW differentiate between functional
tests (as a basic measure) and expanded functional tests (as an
additional measure). What is the difference?

During a functional test, the safety functions are checked as
specified. For example, a safeguard is triggered and a check
performed to ensure that the correct drive stops. Faults in
the peripherals or errors in the software are not assumed or
incorporated into the test. This is reasonable, since this basic
measure is required for PLr a and b and these PLr are usually
implemented with untested category B architectures. Where a
test has not been programmed, it cannot be tested.

Expanded functional tests are a measure supplementing
the functional tests and are required for the higher PLr c to e.
These PLr can be attained only by the use of category 2, 3 and 4
programmable systems with diagnostic functions. Diagnostic
functions are generally also implemented in the SRASW (direct/
indirect monitoring, cross-monitoring, plausibility check, etc.).

The definition from in the EN 61508-7:2011 [3] basic safety
standard is as follows:

Aim [of expanded functional testing]: To reveal failures during
the specification and design and development phases To check
the behaviour of the safety-related system in the event of rare or
unspecified inputs.

Expanded functional testing reviews the functional behaviour of
the safety-related system in response to input conditions which
are expected to occur only rarely (for example major failure), or
which are outside the specification of the safety-related system
(for example incorrect operation). For rare conditions, the
observed behaviour of the safety-related system is compared
with the specification. Where the response of the safety-related
system is not specified, one should check that the plant safety is
preserved by the observed response.

In the expanded functional test, faults are typically generated or
simulated in the control system itself or in its peripheral devices.
This enables the diagnostic functions in the SRASW, which have
been implemented in the input and output blocks (Figure 8), to
be tested, together with their fault response. In this context, it
may be difficult to determine that the safe state of the control
system was in fact brought about by the diagnostic function of
the SRASW under test, and not by the embedded software.

For PLr d and e, it is recommended that expanded test cases
based on limit value analyses be performed in addition. This is
generally advantageous only when the input values are analog
values and different ranges of these input values are formed.
For example: a temperature sensor supplies values between
-20 and +100 °C. Relevant outputs are driven according to the
temperature range. Three ranges are specified:

• Too cold: -20 to +9.99 °C

• Temperature OK: +10 to +29.99 °C

• Too hot +30 to +100 °C

The limit value analysis of this specification yields the extreme
values of -20 and 100 °C and range boundaries of 10 and 30 °C.
Tests should then be carried out with input values at or around
these extreme values and boundary limits, as this is where
processing errors may be suspected.

Where applicable, borderline timing situations should also be
tested, such as time monitoring with borderline delays close to
the nominal monitoring time.

In addition to the functional tests of the safety functions, the
matrix method also enables other test cases to be defined and
validated in accordance with the methods referred to above.

5�11 Test coverage

How much must be tested and for how long? The criterion here
is the test coverage, which is an important measure of software
quality. The test coverage states the proportion of the software

29

executed by the entirety of the test cases. A higher number of
judiciously selected test cases can improve the test coverage
and thus also the software quality. However, this also increases
the overhead of testing. 100% test coverage of all software
elements would be ideal; in practice, the required test overhead
is geared to the required safety integrity, the PLr.

The DIN EN 61508-3:2011 [3] basic safety standard provides
very specific guidance on this aspect in Table B.2 and will be

used here for interpretation in relation to the IFA matrix method
(Table 3). These are test methods that require knowledge of the
program code and do not therefore correspond to the black box
testing required by DIN EN ISO 13849. They nevertheless permit
conclusions regarding an attainable test coverage for processing
in the SRASW (Figure 8), depending on the scope of the test
cases.

Table 3:
Recommendations for test coverage

Test coverage based on IEC 61508-3 PLr
SIL

Scope of test cases in black box testing of the SRASW

100% of the inputs a, b and c
SIL1

A demand must be made at least once to each safety-related input, i.e. to all safeguards and
thus the function blocks of the inputs stage, and the re-start tested. Objective: to ensure that
each subroutine of the SRASW, including the function blocks of the processing stage and
outputs stage, has been called at least once. However, the scope of testing stated in the next
row for PLr d is also recommended for this PLr.

100% of the program statements d
SIL2

Demand all safety functions in all operating modes and test the re-start. Objective: to ensure
that all statements in the processing stage of the SRASW (Figure 7) have been executed at
least once. Includes PLr a, b, c.

100% of the program branches e
SIL3

Demand all safety functions in all operating modes, test the re-start and test all diagnostic
functions by means of fault simulation. Objective: to test both possibilities of each branch in
the processing stage of the SRASW. Includes PLr a, b, c, d.

Certified manufacturer’s function blocks and function blocks
that have already been validated no longer need to be tested;
testing of their combination and parameterization is however
still required. Function blocks that have not yet been validated
must be tested and validated separately during module
development (see Section 5.10).

The test coverage attained can be documented in the IFA matrix
method and in SOFTEMA in the test columns of the matrix
presentations (B4, B5).

5�12 Documentation

Before the manufacturer issues the EC declaration of conformity
for a machine, he must draw up its technical documentation.
However, this should not be regarded merely as a tedious duty.
Proportionate internal documentation is also beneficial to the
company’s own sustainable development work and serves as a
safeguard for the event of legal conflicts. DIN EN ISO 13849-1 is
brief but clear regarding documentation of SRASW:

“all lifecycle and modification activities shall be documented;
documentation shall be complete, available, readable and
understandable.”

The IFA matrix method and SOFTEMA tool support adequate
development documentation, as described in Chapter 6 and
illustrated by the numerous examples in Chapter 7. Chapter 13
deals separately with the topics of “technical documentation”
and “user information”.

5�13 Configuration management

What is meant by configuration management? It is evident, and
must therefore be a requirement, that development of safety-
related software, in particular, should be transparent to all
parties involved and for subsequent audits:

• Who specified, programmed, commissioned, verified and
validated it, and when?

• What was used for its development, e.g. what tools and
settings, re-used software modules and identification,
programming guidelines?

• What manuals are suitable for the development tools?

• Which program versions are loaded in which SRP/CSs?

This and other necessary information, including all relevant
development documents, must be archived for later use,
for example for the event of modification after five years in
operation. Use of the matrix method and SOFTEMA tool results in
all this information being protocoled and archived in a standard
format (Microsoft Excel). This means that data suitably and
permanently archived can still be accessed years later.

5�14 Modifications

Experience has shown that even after testing, SRASW will still
undergo not inconsiderable extension and adaptation during
commissioning of an installation or machine. This procedure is
termed “modification”. These changes are often so extensive

5 Measures for fault avoidance

30

5 Measures for fault avoidance

that not only the code, but even the original specification is no
longer appropriate and should in fact be revised. Changes to
safety functions at one point of the installation or machine may
have an impact on the remaining safety functions, which have
not yet been modified. Modifications may also reveal deficits in
the safety concept. This possibility should be examined, and the
necessary phases of the V-model repeated if appropriate.

Practical experience also shows, however, that even after it has
been installed, a machine or installation may still occasionally
require addition of an emergency stop button or guard door, for
example. Frequently, the machining process itself is improved,
in turn requiring adaptation of the safety concept. The existing
software must be “modified”. Note: this may be the case on
SRP/CSs that have already been in operation for a longer period
of time and for the most part without failures being caused by
software faults – which could equally mean that a fault that is
present but “hidden” has simply not yet taken effect. Following
a modification, however, this situation may change, for example
if the software was not adequately structured and individual
modules/functions are not therefore entirely without reciprocal
influence.

In the situations described, “Murphy’s Law” often takes
effect: the program was written many years previously and
the original programmers now have more pressing tasks or
have since changed employer. Under such circumstances,
it is in the interests of the machine’s availability as well as
safety for the software to possess the properties stated above:
readability, structure, intelligibility, and also conduciveness to
straightforward, non-error-prone modification – irrespective of
whichever programmer happens to be available.

In principle, a modification means that the development process
must be restarted, i.e. in the V-model (Figure 5), at the point in
the process at which a change was made, for example:

• When the code has been changed, the code review,
integration test and validation may have to be repeated.

• If required changes extended to the specification, it too must
be verified again, for example by review by another person,
in order to ensure that no faults have crept in at a different
point in the specification. Accordingly, all development and
verification measures and also validation of the affected
safety functions must be repeated.

The IFA matrix method supports these modifications (Section
6.15) and SOFTEMA automates the relevant changes in the
development documents.

5�15 Two-man rule and degrees of
independence

Checking activities such as verification and validation are
intended to assure conformity of the design of the SRP/CS with
the Machinery Directive. These activities should be begun as
early as possible during development, in order for faults to be
detected and eliminated in time. The outcome of programming
should not, however, be checked by the same person who wrote
the code; the two-man rule applies here. In practice, this often
raises questions. When is the two-man rule needed, if ever?
How independent must the second person be? Can the task be
assumed by someone from the same team?

DIN EN ISO 13849-2:2013, Section 4.1 makes the following
recommendation: “Validation should be carried out by persons
who are independent of the design of the safety-related
part(s).” These may be independent persons, or persons from
independent departments or independent organizations (see
definitions in Table 4). This report also introduces the term
“different person”. This merely means a person other than the
one whose outcome (specification, code, etc.) is to be checked.

The degree of independence should be commensurate
with the risk, i.e. the required performance level PLr. Part 2
of the standard adds in a comment: “Independent person
does not necessarily mean that a 3rd party test is required.”
Unless specified to the contrary by statutory requirements,
the review is therefore typically still conducted “in-house”.
Nevertheless, external test bodies are often consulted for advice
and evaluation of technical and organizational measures.
Table 4 shows the IFA’s recommendation for the degrees of
independence.

DIN EN 61508-1 (VDE 0803-1) [3], Section 8.2.16 (1), Note 1 states:

Depending upon the company organization and expertise
within the company, the requirement for independent persons
and departments may have to be met by using an external
organization. Conversely, companies that have internal
organizations skilled in risk assessment and the application of
safety-related systems, that are independent of and separate
(by ways of management and other resources) from those
responsible for the main development, may be able to use their
own resources to meet the requirements for an independent
organization.

31

5 Measures for fault avoidance

Table 4:
Definition of the degrees of independence for SRASW (based on DIN EN 61508-4:2011)

Definition (example) as a recommendation of the IFA

Different person Person who was not the one who performed the activities to be reviewed, but who may be involved in the pro-
ject or bear responsibility (yes: project manager, supervisors, participants in the activity under review)

Independent person Person who is not involved in the activities to be reviewed and has no direct responsibility for these activities
(no: project manager, superiors, persons involved in the activity to be reviewed; yes: hardware designers for
review of SRASW development; commissioning engineers for review of project planning activities)

Independent department Department not in contact with the project/development departments responsible for the SRASW activities
(person from the QA department/CE department/panel building, etc.)

Independent organization Organization not in contact with the development organizations, owing to its management and other resources
(different business unit, different company, test body)

With these definitions, the IFA provides a detailed
recommendation in Table 5 for the minimum degree of
independence, which is dependent upon the relevant PLr of the
SRASW development. The recommendation is based on the
DIN EN 61508-1:2011 basic safety standard, Table 5, but takes
into account that the safety functions falling within the scope of

DIN EN ISO 13849-1 typically exhibit lower complexity and thus
a lower probability of failure than those within the typical scope
of DIN EN 61508-1. For this reason, the independence required
for SRASW in Table 5 is reduced by one degree from that in
DIN EN 61508-1.

Table 5:
Degree of independence for verification and validation (SRASW)

Minimum degree of independence
for verification and validation for
SRASW *, IFA recommendation

Relevant PLr for SRASW development *

a and b c d e

Different person** Recommended for all
SRASW

For all SRASW Standard SRASW Not sufficient

Independent person Possible, but not ne-
cessary

Possible, but not ne-
cessary

Complex or new SRASW Standard SRASW

Independent department Possible, but not ne-
cessary

Possible, but not ne-
cessary

Possible, but not ne-
cessary

Complex or new SRASW

Independent organization*** Possible, but not ne-
cessary

Possible, but
not necessary

Possible, but not ne-
cessary

Possible, but not ne-
cessary

* Based on the DIN EN 61508-1 basic safety standard [3], Table 5

** Lowest degree of independence

*** Highest degree of independence

The green fields in Table 5 refer to development of SRASW with
the use of PLC languages on a safety PLC where experience
exists with the type of design and the technology used and the
programs do not exhibit a higher degree of complexity – i.e.
as is the case for typical users of the matrix method. For the
“standard SRASW” considered in the present IFA report, this
means that for PLr c and d, a “different person” is sufficient
to meet the two-man rule; for PLr e, an “independent person”
is recommended. It should be borne in mind that a fault may
pose a threat to human life, even with PLr c. The two-man rule is
recommended even for for PLr a and b.

The yellow table fields refer to all other error-prone situations,
in which, for example, very large or highly complex programs
are developed, or a new type of software architecture or new
technology is used (FVL languages, unfamiliar controllers,
software architectures developed in-house, etc.). The IFA matrix
method will also not usually be suitable in such situations.

The grey table fields represent degrees of independence that are
possible, but not necessary. If a lower degree of independence
is selected than in Table 5, the reasoning for this should be
stated.

5�16 Project management

For the development of SRESW (embedded software) for a PLr of
c or higher, DIN EN ISO 13849-1 requires a “project management
and quality management system comparable to, e.g. IEC 61508
or ISO 9001”. Conversely, in-house project management is
not explicitly required in connection with the requirements
for SRASW; the V-model is however specified for process
organization. At another relevant point, project management –
not specified in greater detail – is recommended: in Annex G.4,
Measures for avoidance of systematic failures during SRP/CS
integration. Here too, however, SRASW is not the direct focus.

32

5 Measures for fault avoidance

From this it can be inferred that implementation of the V-model
as a development life cycle for SRASW, with verification and
validation (Section 5.2) in observance of the two-man rule
(Section 5.15), is an appropriate error-avoidance measure for
quality assurance. Application of the matrix method supports
this quality assurance. Beyond this measure, a “project
management and quality management system comparable to,
e.g. IEC 61508 or ISO 9001” is not required for SRASW.

Nor does DIN EN ISO 13849-1 provide any definition of its own
for “project management”. For the sake of completeness,
the reader is therefore referred here to a description in the
DIN EN 61508-7 basic safety standard [3], Section B.1.1:

Aim: To avoid failures by adoption of an organisational model
and rules and measures for development and testing of safety-
related systems.

Description: The most important and best measures are

• the creation of an organisational model, especially for quality
assurance which is set down in a quality assurance handbook;
and

• the establishment of regulations and measures for the
creation and validation of safety-related systems in cross-
project and project-specific guidelines.

A number of important basic principles are set down in the
following:

• definition of a design organisation:

 – tasks and responsibilities of the organisational units,
 – authority of the quality assurance departments,
 – independence of quality assurance (internal inspection)
from development;

• definition of a sequence plan (activity models):

 – determination of all activities which are relevant during
execution of the project including internal inspections and
their scheduling,

 – project update,

• definition of a standardised sequence for an internal
inspection:

 – planning, execution and checking of the inspection
(inspection theory),

 – releasing mechanisms for subproducts,
 – the safekeeping of repeat inspections;

• configuration management:

 – administration and checking of versions,
 – detection of the effects of modifications,
 – consistency inspections after modifications;

• introduction of a quantitative assessment of quality assurance
methods:

 – requirement acquisition,
 – failure statistics;

• introduction of computer-aided universal methods, tools and
training of personnel.

5�17 External testing of SRASW

The Machinery Directive and the relevant national product
safety legislation oblige manufacturers, importers and dealers
of machinery to comply with comprehensive occupational safety
and health requirements. Failure to meet these requirements
may have far-reaching consequences, such as product liability
cases or subsequent demands by the labour inspectorates.

Among the requirements of the Machinery Directive for
conformity assessment of particularly dangerous machinery, i.e.
safety-related components listed in Annex IV, is that a notified
testing and certification body designated by an EU member
state must be charged with the task. For the vast majority of
machines, however, external testing by a test body is performed
at the manufacturer’s own volition, and provides certainty that
the products and technical documentation comply with the
national and European health and safety requirements.

This external testing also has advantages for operators.
Who is able to assess the safety of a product exactly at the
purchase stage? Often, there is little alternative to trusting
the manufacturer. This may prove expensive if safety deficits
are encountered during subsequent operational use. Tested
products guarantee that the customer is purchasing a product
that is safe from a technical perspective – for the benefit of both
the company and its employees.

The testing and certification system of the German Social
Accident Insurance – DGUV Test – comprises 16 testing and
certification bodies (www.dguv.de/dguv-test). Most of these
bodies test and certify machinery, which therefore includes
safety-related application programs. Owing to the programs’
complexity, most tests must be coordinated with the test bodies
during the design and development phases. This also applies to
the form taken by specification, documentation and validation,
for example in accordance with the IFA matrix method, which
can reduce the testing and certification overhead.

http://www.dguv.de/dguv-test

33

6 Development of safety-related application software

This chapter forms the core of the present report and is drawn
essentially from DGUV research project FF-FP0319 (see Section
2.2 of the report). The IFA matrix method is introduced below
and illustrated by examples.

6�1 Matrix-based specification and
documentation

The IFA matrix method relies on a compact specification and
documentation of SRASW being created, in addition to the usual
documents such as the design documents for a machine and the
program printout of the SRASW.

This method requires the software to possess a certain
structure. This structure is also an essential requirement for the

simplification provided by the V-model (see Section 5.4). Figure
10 shows an example of the software structure.

As the figure shows, the structure is divided clearly into three
parts. On the left-hand side is the inputs stage, in which the
inputs to the PLC are processed primarily by means of library
blocks supplied with the PLC by the manufacturers. The outputs
stage is shown on the right-hand side: here, the outputs from
the PLC are actuated through library blocks, or directly.

In the middle (shown in blue) is the actuator processing stage,
which has yet to be specified. In this example, the outputs
EMST_OK and SG_OK of the library blocks used in the inputs
stage are connected logically in the processing stage. This
logic comprises solely the operations AND, OR and NOT. Time
conditions must be implemented at the inputs and outputs
stages.

Figure 10:
Example of a specified software structure. The function blocks are compliant with PLCopen [8].

Inputs stage Processing stage Outputs stage

 EMST_OK
IS_EMST SF_EDM QS_M1

IS_SG_1 SG_OK
SF_EDM QS_M2

IS_SG_2

SF_Emergency Stop

SF_Guard Monitoring

This structure corresponds to the sensor → logic → actuator
architecture for safety functions from DIN EN ISO 13849-1 (see
Section 5.7).

Structured naming of variables is also important for the IFA
matrix method. This provides a better overview of the program
and supports the avoidance or swift location of errors, as
modules associated with each other always share the same
name elements.

The matrix method essentially consists of the following steps:

1. Definition of the safety functions (document A1)

2. Listing of the variable names and addresses of safety-related
inputs and outputs in the I/O list (document A2.4)

3. Selection of measures for fault avoidance from the catalogue
(document A3)

4. Specification of the normative requirements (document A4)

5. Specification of the safety program architecture (document
B1)

6. Specification of the modular architecture with modules at
the inputs and outputs stages (document B3)

7. Creation of the matrix with the entries for the software
 specification (document B4)

8. Verification of documents B1, B3 and B4 against the
 specification of the safety functions (document V1)

9. Programming of the software

10. Code review (document C1), performed if possible by a
second person

34

6 Development of safety-related application software

11. Validation of the software, i.e. analysis and functional test
(document D1), if possible by a second person

12. Archiving of the software and documentation, and of all
required test documents

Note: The matrix method presented here can also be used for
compact presentation of switching operations that are not
safety-related.

With reference to successive examples each based upon the
last, the following chapters describe application of the IFA
matrix method. The examples serve as a common thread. The
method can be adapted to the relevant requirements during
its application. The contents of some documents (e.g. A3)
depend strongly upon the project. Application of the method
is supported by the SOFTEMA tool, which is described in
Chapter 14.

Care was taken in presentation of the control system examples
to make them non-proprietary.

6�2 Example of matrix-based
specification and documentation

For compact and clear documentation of the examples
discussed here, all documents associated with each example
have been compiled in an Excel file. This enables the reader to
navigate easily to each document by clicking on the spreadsheet
tabs. These Excel documents can be found in a single archive
file in the download area of the present IFA report.

The complete structure of the Excel file is explained with
reference to a straightforward example. The format of the
examples available for download (Chapter 7) was updated from
that used in the research project. This format is better suited to
automated processing by a software tool such as SOFTEMA.

In this section, the matrix method is illustrated by the example
of a robot production cell, as described in Section 7.1 and
shown in Figure 11. The figure constitutes the system sketch
(document A2.1). This document is marked as optional in Table
1 (Page 23); however, the example can be explained more easily
with this system sketch.

The function of the manufacturing cell can be described as
follows:

• The robot (M1) loads material into a mould on the mould
carrier. For this purpose, it reaches through the automatic
vertical guard SG3.

• After loading the material, the robot withdraws and the
vertical guard closes again automatically.

• Following a curing time, a machine operator opens the fast-
moving gate SG2 (motor M3), retrieves the finished part from
the mould, cleans the mould and closes the fast-moving gate
again.

Figure 11:
System sketch (document A2.1), example of a robot production
cell

Vertical guard SG3

Fa
st

-m
ov

in
g

ga
te

 S
G

2

M2

 Emergency stop

 Acknowledgement

 Mould carrier

M3

G
ua

rd
 d

oo
r S

G
1

Robot

M1

• As soon as the fast-moving gate has been closed, the robot
can load material into the mould again.

• The fast-moving gate SG2 has an edge protection sensor
SL_SG2 (not shown) to prevent crushing at the closing edge.

• The guard door SG1 provides access to the robot for
maintenance.

• The emergency stop EMST and acknowledgement actuator
are the only control devices shown in the illustration, as the
remaining controlgear is not relevant to safety.

• Automatic mode is the only operating mode for this
production cell.

6�3 Specification of the safety
functions

The risk assessment yields five safety functions for this case.
Table 6 shows the detailed definition of an example safety func-
tion (the emergency stop) in the safety specification. The struc-
ture of the definition is based on SISTEMA Cookbook 6 [14] and
the information in Box 6.1 of BGIA Report 2/2008 [2].

The software engineering of all safety functions in the example
is illustrated in compact form in Table 7 (document A1).

35

6 Development of safety-related application software

Table 6:
Definition of the emergency stop safety function

SF1 Emergency stop

1 Description When the emergency stop button EMST is pressed, the drives M1, M2, M3 are halted.

2 Triggering event Pressing the emergency stop button

3 Safety-oriented response Stopping: speed = 0, stop category 0 (STO)

4 Dangerous machine part Axes M1, M2, M3

5 Response to a fault in the SF Stopping: speed = 0, stop category 0 (STO)

6 PLr d

7 Operating mode All operating modes

8 Parameters/faults 8.1 Parameter: discrepancy time Tdis = 50 ms for the contacts of the emergency stop button -> fault

 8.2 Parameter: discrepancy time Tdis_Q = 1 s for contactor monitoring

9 Run-on 100 ms

10 Behaviour in the event of a power
failure

Stopping: speed = 0, stop category 0

11 Re-start criteria No fault, emergency stop button closed, acknowledgement button actuated

12 Priority 1 (highest priority)

Version

Date

Name

Table 7:
Specification of the safety functions (document A1)

No Description PLr Response time in ms Priority

SF1 When the emergency stop EMST is actuated, M1, M2 and M3
are switched off.

d 100 1

SF2 When the guard door SG1 is opened, M1 is switched off. d 100 2

SF3 When the fast-moving gate SG2 is opened, M2 is switched
off.

d 100 2

SF4 When the fast-moving gate SG2 is opened and the vertical
guard SG3 is opened, M1 is switched off.

d 100 2

SF5 When the edge protection sensor SL_SG2 of the fast-moving
gate SG2 is actuated, M3 switched off.

d 100 2

Certain information has been omitted in this compact form. The
triggering event and the response of the safety functions are
shown in the Description column. The remaining parameters in
Table 6 have been included in the more general A3 catalogue of
measures for fault avoidance. This improves the clarity of this
document. The operating mode is not stated in this example,
as automatic mode is the sole operating mode. The safety
functions, including multiple operating modes, are shown in the
later example which includes set-up mode (Section 6.11).

6�4 Specification of the control
hardware

Figure 12 shows the circuit diagram (document A2.2) for the
example. The diagram is shown here in highly simplified form;
normally, circuit diagrams from an electrical CAE program are
available for this document.

The circuit diagram shows that all safety functions are
implemented in two-channel form owing to the required
performance level of PLr d. The drives are also switched by
two contactors connected in series. Each of these contactors
is connected to only a single binary output; the desired two-
channel implementation appears to be lost as a result. However,
each binary output is switched internally within the control
system by two switches (not shown); the solution shown is
therefore permissible.

Figure 13 shows the system structure. Specifically, this shows
the hardware structure of the safety PLC and where applicable
the connection of further safety-related components.

36

6 Development of safety-related application software

Figure 12:
Circuit diagram of the example (Document A2.2)

Figure 13:
System structure (document A2.3)

The safety PLC and safety input and output cards are highlighted
in yellow. The standard input card is not highlighted. A check
field for the code review (C1) is highlighted in grey.

Table 8 shows the I/O list (document A2.4). Variables beginning
with the syntax “IS_...” or “QS_...” (serving here as an example)
originate from the safe I/O area of the safety PLC. For the
exchange of data over networks, communication parameters can
also be entered here in place of the I/O addresses.

The I/O list contains additional check fields (grey area): these
are part of the validation protocol D1 and the code review C1, in
which the wiring of the sensors and actuators (column D1) and
the logical relationship between the variables and the function
blocks in the software (column C1) are checked for correctness.

Validation in columns D1 is performed on the machine in
assembled form, verification in column C1 with reference to the
program listing or in the program editor following programming.

For two-channel inputs that are tested for discrepancy by an I/O
card, only correct wiring of the inputs need be tested.

Correct parameterization on the I/O card for the specified
discrepancy time
(e.g. 50 ms) must be checked. This is one of the manufacturer-
specific tests.

 S
af

et
y

PL
C

 2
4S

D
I (

I8
.0

 -
I1

0.
7)

 1
6D

I (
I4

.0
 -

I5
.7

)

 1
0S

D
O

 (Q
24

.0
 -

Q
25

.1
)

C
1

System structure tested (OK/not OK):
Date:

Name:

37

6 Development of safety-related application software

Table 8:
I/O list (document A2.4); NC = normally closed contact, NO = normally open contact

D1 C1

Signals Variable Address Validated
(OK/not OK)

Correct connections
verified in the software

(OK/not OK)

Inputs

Emergency stop EMST, two-channel (NC) (1S1) IS_EMST %I8.4

Contact 1 robot guard door SG1 (NC) (1B1) IS_SG1_1 %I8.2

Contact 2 robot guard door SG1 (NO) (1B2) IS_SG1_2 %I9.6

Contact 1 fast-moving gate SG2 (NC) (2B1) IS_SG2_1 %I8.1

Contact 2 fast-moving gate SG2 (NO) (2B2) IS_SG2_2 %I9.5

Contact 1 vertical guard SG3 (NC) (3B1) IS_SG3_1 %I8.0

Contact 2 vertical guard SG3 (NO) (3B2) IS_SG3_2 %I9.4

Edge protection sensor of SG2, two-channel (NC)
(2S1)

IS_SL_SG2 %I8.5

Feedback contactors M1 (NC) (1K1, 1K2) IS_SM1 %I8.6

Feedback contactors M2 (NC) (2K1, 2K2) IS_SM2 %I10.2

Feedback contactors M3 (NC) (3K1, 3K2) IS_SM3 %I8.7

Acknowledgement button (NO) (3S1) I_ACK %I4.0

Outputs

Contactor motor M1 (1K1, 1K2) QS_M1 %Q24.0

Contactor motor M2 (2K1, 2K2) QS_M2 %Q 24.1

Contactor motor M3 (3K1, 3K2) QS_M3 %Q 24.2

 Date:

Name:

Software signature:

Remarks on the circuit diagram and the I/O list:

• The emergency stop button (IS_EMST) and edge protection
sensor (IS_SL_SG2), which are two-channel elements,
possess only one address, as the two channels are already
monitored on the I/O card for discrepancies. The card then
relays a single signal with logical compression (see above).
The advantage here is that the program need no longer
monitor the discrepancy.

• Discrepancy monitoring on the I/O card is not necessary
for the guard door contacts, as the software module SF_
GuardMonitoring performing processing requires the two
items of contact information separately.

• The mirror contacts of a pair of contactors are connected in
series and each read into a binary input (IS_SM1, 2, 3). This
enables the contactor to be monitored for failure by means of
the SF_EDM function block.

• If the contactors are in fact contactor relays serving to switch
the control voltage to the contactors proper for the motor, the
mirror contacts of all contactors and contactor relays involved
must be connected in series and read in to permit monitoring.

6�5 Catalogue of measures for fault
avoidance

Table 9 shows by way of example the catalogue of higher-level
measures for fault avoidance; Table 10 shows the measures
for fault avoidance specific to the control system used (both
compiled in document A3). Further information on the measures
can be found in Section 5.7.

The measures shown here serve solely as examples. This
catalogue must be suitably adapted and extended, according
to the company’s requirements and those of the project, for
programming of a specific application and for the control system
used.

The measures specified for fault avoidance are numbered
consecutively (Rx) in document A3 (as shown in Tables 9 and 10)
and can be marked as implemented (“OK”) or not implemented
(”not OK”) in column C1 during code review.

37

6 Development of safety-related application software

Table 9:
Example catalogue of higher-level measures for fault avoidance (document A3)

C1

Abbreviation (OK/not OK)

Variables

Prefix for binary inputs: I_... (not safety-related) / IS_... (safety-related) R1

Prefix for binary outputs: Q_... (not safety-related) / QS_... (safety-related) R2

Prefix for instances: Timers: “T_”; rising edge detection: “R_”; flip-flops: “FF_”; SF_Guardmonitoring: “MON_”;
SF_EmergencyStop: “EMST_”; SF_EDM: “EDM_”

R3

Prefix for global variables: “G_” (not safety-related)/ “GS_” (safety-related). R4

Variable names: The variable name after the prefix should be self-explanatory, e.g. using the name of the
equipment (...SG1... for SG1).

R5

Variable declaration: Initialize with a safe state. Comment required. R6

Comments: Each network and each variable declaration is commented. R7

Signal processing
Software architecture: The software is to be divided into a inputs stage, processing stageand a outputs stage.
The inputs stage is to be implemented in sequential networks. Each binary output is to be implemented in a
network together with the processing stageand the outputs stage.

R8

Assignment: Variables are to be assigned only at a single point. R9

Cyclical processing: Each part of the software is processed cyclically without conditions. R10

Monitoring of two-channel pusbuttons: Two-channel pusbuttons are monitored on the input card with a
discrepancy time of 100 ms.

R11

Monitoring of contactors: Contactors are monitored with a discrepancy time of 1 s. R12

Monitoring of guard doors: Guard door contacts are monitored with a monitoring time of 1 s. R13

Automatic re-start: Permitted only for automatic guards. R14

Peripheral error: Acknowledgement is required. R15

Activation of safety functions: Safety functions are activated by a FALSE signal. R16

Library modules used

Use: Preference should be given to the use of library modules. R17

Guard doors: SF_GuardMonitoring R18

Emergency stop: SF_EmergencyStop R19

Contactors: SF_EDM R20

Automatic re-start: The parameters “S_StartReset” and “S_AutoReset” of the library blocks are FALSE. S_
AutoReset = TRUE may be set only for automatic guards.

R21

Activation: The “Activate” input parameter of SF_GuardMonitoring, SF_EmergencyStop and SF_EDM is always
TRUE.

R22

Modules developed in-house: Where possible, logic that is used multiple times should be encapsulated in a
module in the form of a function or function block. Development follows the V-model. Password protection and
library management are required.

R23

Activities following changes

Documentation: All changes must be documented in the change history. R24

Validation: Following changes to software, its validation must be repeated. R25

 Date:

Name:

38

6 Development of safety-related application software

Table 10:
Example catalogue of control system-specific measures for fault avoidance (document A3)

C1

Abbreviation (OK/not OK)

Program editor/programming language

Program editor used Safety Editor V10.1 R26

Programming language Function Block Diagram (FBD) R27

Software library Safety Library V3.2 R28

Signal processing

The safe I/O cards must be operated with ACK_XYZ, i.e. the I/O cards
are not automatically reintegrated after a fault has been rectified.

 R29

I/O cards that have been passivated must be acknowledged when
they are re-integrated.

 R30

Safety mode (not test mode) must be activated in the PLC. R31

If test mode is active, this should be displayed and the machine
should switch off automatically.

 R32

 Date:

Name:

6�6 Architecture of the safety program
and the standard program

Figure 14 shows the architecture of the safety program
(document B1). The call-up hierarchy may differ from that shown
here, depending on the control system. However, it can be seen
that the main safety program (FB_Main) calls up the safety
library blocks. The diagram also includes a brief explanation of
the significance of the individual modules and a check box for
the code review (C1).

The architecture of the standard program (document B2) is
optional, as it is not usually relevant for execution of the safety
program. It may, however, facilitate an understanding of the
overall function of the installation.

The architecture of the safety program (document B1) can be
omitted for simple applications.

Figure 15 shows the modular architecture (document B3). This
shows the interaction within the entire safety software. As the
illustration shows, the structure is divided clearly into three
parts. The inputs stage, in which the inputs are processed
primarily by means of library blocks, is shown on the left-hand
side.

The outputs stage, in which outputs are controlled directly or by
means of library blocks, is shown on the right-hand side. The
structure of these two parts is determined by the periphery. The
actuation logic for the actuators, which has yet to be specified,
is shown in the centre in blue (ACT module). Below this is a field
for verification (V1) of the modular architecture. The modular
architecture is verified against the specification of the safety
functions (document A1). It can also be presented in tables
in the form of a module list, rather than graphically as shown
in Figure 15. This reduces the overhead for description. The
SOFTEMA tool (Chapter 14) uses the list form.

The essential functionality of the certified function blocks
in accordance with PLCopen [8] shown in Figure 15, i.e.
SF_EmergencyStop (emergency stop function block),
SF_GuardMonitoring (guard door function block) and SF_EDM
(contactor monitoring function block), is explained in Section
6.17. Only where function blocks are important for the ensuing
process are their signals shown. The outputs of the inputs stage
employ negative logic (low-active, active low).

The part of Figure 15 that is still unknown at this point is the ACT
actuation module for the actuators. In the general case, ACT
consists only of the elementary basic logic operators AND (&),
OR (≥1) and NOT (o). The symbols for the logical operators used
here correspond to IEC 60617-12. The basic structure of the ACT
module for actuating an actuator is shown in Figure 16.

39

40

6 Development of safety-related application software

Figure 15:
Modular architecture (document B3)

Inputs stage Outputs stage

Emergency stop Modul ACT
EMST_OK Contactors M1

IS_EMST
QS_M1

Guard door SG1
SG1_OK Contactors M2

IS_SG1_1
IS_SG1_2 QS_M2

Fast-moving gate SG2
SG2_OK Contactors M3

IS_SG2_1
IS_SG2_2 QS_M3

Vertical guard SG3
SG3_OK

IS_SG3_1
IS_SG3_2

IS_SL_SG2

Bibliotheksbausteine
Selbstgeschriebene Bausteine

Date:
Name:

SF_EDM

SF_Guard
Monitoring

SF_EDM

SF_Guard
Monitoring

SF_EDM

V1
Verification performed (ok / not ok):

SF_Emergency
Stop

Actuation
(specified

by the
matrix)

SF_Guard
Monitoring

Figure 14:
Architecture of the safety program
(document B1), shown here as a call-up hierarchy

PM Program module
FB_Main Main safety program

SF_EmergencyStop Emergency stop monitoring module
SF_EDM Contactor monitoring module
SF_GuardMonitoring Guard door monitoring module

SF_EDM

Safety Library

SF_EmergencyStop

Safety Library

SF_GuardMonitoring

Safety Library

C
1

tested (ok / not ok):
Date:

Name:

PM FB_Main

41

6 Development of safety-related application software

Figure 16:
Structure of the ACT module for an actuator

Safety functions are generally activated with the 0 signal in
accordance with the closed-circuit current principle, i.e. the
hazard is eliminated. If the output of the right-hand AND element
is FALSE, a contactor is de-energized, a valve moves to its safety
position or an integral safety function in the variable frequency
drive is activated. Figure 16 also shows the significance of the
priorities (1 is the highest priority here). Priorities are usually
linked to operating modes. Signals with a priority of 1 always
activate the safety function with a 0 signal. The emergency stop
is a good example. Signals that are assigned to automatic mode
or set-up mode, for example, all have priority 2.

Should, in rare cases, priority 3 signals be required, they would
be implemented as an input on one of the blue priority 2 AND
elements with the same OR-AND logic.

The above example, however, has only a single operating mode.
The right-hand AND element of each actuator thus takes effect
here, and priorities 1 and 2 are the same.

6�7 Software specification with the
cause and effect matrix

The logic described above for the ACT actuation module must
be specified in the next step for programming. This specification
is also to be suitable for use for verification and validation of
the program. A cause and effect (C&E) matrix is created for this
purpose. The C&E matrix is a graphical presentation of causes
leading to or significantly influencing effects. The C&E matrix
is also known as a cause and effect diagram, cause and effect
chart or cause and effect table. These forms of presentation are
described in IEC 62881. Figure 17 shows an example of the C&E
matrix for the installation described here.

Figure 17:
Cause and effect (C&E) matrix

Safety functions

IS
_E

M
ST

 (I
8.

4)

IS
_S

G
1_

1
(I8

.2
)

IS
_S

G
1_

2
(I9

.6
)

IS
_S

G
2_

1
(I8

.1
)

IS
_S

G
2_

2
(I9

.5
)

IS
_S

G
3_

1
(I8

.0
)

IS
_S

G
3_

2
(I9

.4
)

IS
_S

L_
SG

2
(I8

.5
)

Q
S_

M
1

(Q
24

.0
)

Q
S_

M
2

(Q
24

.1
)

Q
S_

M
3

(Q
24

.2
)

1 1 1 1 1 1 1 1 ALL_OK ON ON ON
0 - - - - - - - SF1: Emergency stop actuated OFF OFF OFF
- 0 0 - - - - - SF2: SG1 open OFF NOP NOP
- - - 0 0 - - - SF3: SG2 open NOP OFF NOP
- - - 0 0 0 0 - SF4: SG2 and SG3 open OFF NOP NOP
- - - 0 0 - - 0 SF5: Edge protection sensor actuated NOP NOP OFF

Cause Effect
Involved inputs Outputs

Automatic mode Condition 1a
 Condition 2a
 Condition 2b & Condition 1b

 (e.g. emergency stop)

ContactorPriority 2
priority 2 ≥1 & Valve

 Setup mode Frequency inverter
 Condition 2a
 Condition 2b &

 Setup mode

Automatic mode
priority 2

Conditions with
highest priority 1

42

6 Development of safety-related application software

This is the subject of the discussions below. In a C&E matrix,
the triggering events (causes, i.e. the control system’s signal
inputs) are listed below each other in rows on the left-hand side
and their effects (the signal outputs) in columns on the right-
hand side. The example installation has an initial state from
which all safety functions are tested. This state is referred to as
“ALL_OK” in the matrix. In the ALL_OK state, all enabling signals
for the actuators QS_M1 ... QS_M3 are TRUE. Beginning in this
initial state, the switching operations of the safety functions are
entered with the associated input signals.

This matrix shows the switching behaviour of the safety
functions clearly, and therefore serves as the basis for testing

during software validation. It is created during the specification
phase, independently of subsequent programming.

As the matrix clearly shows the switching behaviour of the safety
functions, it is advantageous to extend it to cover specification
of the software for the safety functions. The simple presentation
shown in Figure 17 is extended for this purpose. Fields for code
review and validation are added, together with entries that
clearly specify the ACT actuation module. This yields document
B4, the safety-related software specification and validation plan.
Figure 18 shows the complete matrix.

Figure 18:
Extended C&E matrix (document B4, Safety-related software specification and validation plan); check fields (grey fields) and control
information (blue variables)

Safety functions

M
od

e
of

 o
pe

ra
tio

n

Pr
ec

ed
in

g
st

at
e

in

th
e

te
st

St
at

e

IS
_E

M
ST

 (I
8.

4)

IS
_S

G
1_

1
(I8

.2
)

IS
_S

G
1_

2
(I9

.6
)

IS
_S

G
2_

1
(I8

.1
)

IS
_S

G
2_

2
(I9

.5
)

IS
_S

G
3_

1
(I8

.0
)

IS
_S

G
3_

2
(I9

.4
)

IS
_S

L_
SG

2
(I8

.5
)

Q
S_

M
1

(Q
24

.0
)

Q
S_

M
2

(Q
24

.1
)

Q
S_

M
3

(Q
24

.2
)

Ac
kn

ow
le

dg
em

en
t

I_
AC

K
(I4

.0
)

Tested (ok
/ not ok) Name Date

C1: Software consistent with the matrix
documentation

1 1 1 1 1 1 1 1 1 ALL_OK EIN EIN EIN
EMST_OK EMST_OK EMST_OK

1 2 0 1 1 1 1 1 1 1 SF1: Emergency stop actuated OFF OFF OFF
SG1_OK

1 3 1 0 0 1 1 1 1 1 SF2: SG1 open OFF NOP NOP
SG2_OK

1 4 1 1 1 0 0 1 1 1 SF3: SG2 open NOP OFF NOP
SG2_OK v
SG3_OK

1 5 1 1 1 0 0 0 0 1 SF4: SG2 and SG3 open OFF NOP NOP
IS_SL_SG2

1 6 1 1 1 0 0 1 1 0 SF5: Edge protection sensor actuated NOP NOP OFF

Date:
Tester:

Cause Effect
Involved inputs Outputs

ON

ON

D1

ON

ON

ON

V1
Verification performed (OK / not OK): Software signature:

In the additional columns on the left-hand side, the operating
mode, a serial number (state) and the preceding state during
testing of the safety function are stated for each safety function.
“Preceding state” refers to the state set for the test before a
demand is made the safety function under test.

The “software signature” shown at the bottom of Figure 18
is a unique identifier for a version of the SRASW. It changes
whenever the program is modified, even if at only one point.

The “Verification” field (V1) on the left at the bottom of Figure 18
serves to verify the switching information (OFF, ON, NOP) and
the variables (in blue) against the specification of the safety
functions (document A1).

Acknowledgement indicates both the acknowledgement input
and the need for acknowledgement. If, for example, the safety
function SF1 has been tripped, the ALL_OK state is not restored
until the EMERGENCY STOP button has been disengaged and
then acknowledged with “ON” (corresponding to TRUE on the
acknowledgement input).

The variables relevant to the software specification are shown
in blue in Figure 18. The variables are the output variables from
the inputs stage and are thus the input variables of the ACT
actuation module (Figure 15). These variables employ negative
logic.

The following rule applies to generation of the software
specification:

Step 1: For each individual safety function triggering a switching
operation on an actuator (from the preceding state, in this case:
ALL_OK), the logical combination of the ACT input variables
triggering the switching operation is entered in the relevant cell
of the table. This switching process is indicated here by “OFF”
or “ON”. Where a safety function does not trigger a switching
operation on an actuator, “NOP” must be entered in the cell.

43

Example from Figure 18 for the safety function SF1 and its effect
upon the output QS_M3:

The cell contains “EMST_OK“, and below that “OFF”. This
entry means: “If variable EMST_OK = FALSE, output QS_M3
should = FALSE.”

NOP does not trigger a switching operation.

Example for the safety function SF4 and output QS_M1:

SF4 triggers a switching operation when – and only when –
guard door s SG2 and SG3 are open. The OR operation
“SG2 v SG3” must therefore be entered. This means: “If the
expression (SG2 _OK OR SG3_OK) = FALSE, output QS_M1
should = FALSE.”

Step 2: The complete logic combination for each actuator
(i.e. across all safety functions) is then derived from the AND
operation of the variables shown in blue in the column for the
actuator.

Figure 19 shows the final result for ACT in this example.

Where a corresponding option is offered in the programming
environment of a safety PLC, this code could be generated

automatically from the entries shown in blue in Figure 18.
This would also enable programming of the ACT module to be
completed in the same work step by specification of the ACT
module in the PLC’s programming environment.

The following applies to application of the matrix:

• Programmers read the relevant column (the entries in blue) for
each actuator in the C&E matrix in order to program the logic
for it.

• Testers read the rows of the matrix to test individual safety
functions.

The C&E matrix makes the entire switching behaviour of
the safety functions transparent and verifiable. The entries
in blue specify the software of the ACT module formally
and unambiguously. This also makes the software clear,
comprehensible and verifiable at the code review stage.

The complete safety Program sketch (document B5) for this
example is presented in Figure 20. This outline serves to make
the example comprehensible. It is generally of no relevance
during practical application of the matrix method, as the
program is written directly against specification B4 rather than
with reference to the outline.

6 Development of safety-related application software

Figure 19:
Logical structure of the ACT module
(in the dashed frame)

ACT module

EMST_OK

SG1_OK & QS_M1

SG2_OK
&

SG3_OK

EMST_OK
& QS_M2

SG2_OK

EMST_OK
& QS_M3

SF_EDM

SF_EDM

SF_EDM
IS_SL_SG2

44

6 Development of safety-related application software

Figure 20:
Program sketch (document B5)

 inputs stage ACT module outputs stage

Emergency stop EMST EMST_OK
 EMST_OK SF_EDM QS_M1

IS_EMST SG1_OK &

SG2_OK
Guard door SG1 ≥1

SG1_OK SG3_OK
IS_SG1_1
IS_SG1_2 EMST_OK SF_EDM QS_M2

&
Fast-moving gate SG2 SG2_OK

SG2_OK
IS_SG2_1
IS_SG2_2 EMST_OK SF_EDM QS_M3

&
Vertical guard SG3

SG3_OK
IS_SG3_1
IS_SG3_2

IS_SL_SG2

IS_SL_SG2

SF_Emergency
Stop

SF_Guard
Monitoring

SF_Guard
Monitoring

SF_Guard
Monitoring

6�8 Verification and validation in the
IFA matrix method

The C&E matrix shown in Figure 18 also contains the following
fields:

• V1 Verification:
Is the switching behaviour entered consistent with the safety
functions specified in A1?

• C1 Code review:
Is the program code of the ACT actuation module consistent
with the switching behaviour entered? (Proceed column by
column for each output.)

• D1 Software validation:
Does the application software meet the safety requirements?
(Proceed row by row for each safety function.) All safety
functions are tested live in the installation. The associated
states and addresses of the inputs and outputs are also
listed. The initial state from which the test is to be performed
is stated. Note that further rows for testing with further test
cases can easily be added to the matrix. For PLr c, d and e, a
preliminary simulation test is recommended in accordance
with the measures for fault avoidance set out in the standards.

Table 11 shows an example of a code review (document C1).
The “Reference” column of the code review refers to relevant
documents. Each of these documents contains a C1 field,
column or row for the code review.

Table 11:
shows an example of a code review (document C1).

Have the activities been completed? Reference: Completed
(yes/no)

1. Were the agreed fault avoidance measures, tools and programming rules
observed during programming?

A3 Measures (column C1)

2. Has the hardware system structure been implemented? A2.3 System structure (field C1)

3. Has the interconnection of I/O signals been implemented correctly in the
code?

A2.4 I/O list (column C1)

4. Is the architecture of the safety program being followed? B1 Architecture of the safety program (field C1)

5. Has the modular architecture been respected? B3 Modular architecture (field C1)

6. Has the specification from the matrix been implemented in the code? B4 C&E matrix (row C1)

Date:

Name:

Software signature:

45

6 Development of safety-related application software

Table 12:
Example Protocol of software validation (document D1)

Have the activities been completed? Reference: Completed (yes/no)

Verification of the modular architecture B3 Modular architecture (field C1)

Verification of the matrix B4 C&E matrix (field V1)

Code review C1 Code review:

I/O-check A2.4 I/O list (column D1)

Testing of the peripheral devices Refer to the manufacturer’s specifications

Validation of the C&E matrix B4 C&E matrix (column D1)

Validation of the safety functions A1 Safety functions (column D1)

Validation of the requirements A4 Requirements (column D1)

Is documentation complete? Present (yes/no)

V-model documents from this Excel document

PDF printout of all safety-related software, including checksum

PDF printout of the hardware configuration (with all settings), including checksum

Archiving of PDF manuals for all system components

PDF printout of the configuration of peripheral devices, including checksums

Manufacturer’s approval regulations (e.g. for parameterization of safety components)

Relevant standards

Date:

Name:

Software signature:

The Protocol of software validation (document D1, see Table 12
for an example) cross-references the fields, columns or rows
marked V1 or D1 in the reference documents.

For the user, this raises the question of the test coverage of the
D1 columns in Figure 18. Testing is limited here to testing of the
serviceability of the safety functions (5 in number) (as already
stated, rows containing additional test cases can be added if
necessary).

As can be seen from Figure 15, the ACT module in this case
has five binary input variables (i.e. the enable signals) and
three binary output variables (actuator signals). The switching
behaviour of the ACT could therefore be described by a
switching table with 32 rows (25 input variables) and three
columns. The logic in Figure 19 could also be obtained by the
use of mathematical transformations. Working through this
switching matrix would yield full test coverage for the ACT
module. In practice, the overhead would just about be justifiable
in this case.

The situation is different if, for example, ten safety functions
are present, resulting in the ACT having approximately ten input
variables. Ten safety functions or more are quite conceivable
in real-case applications. The switching matrix would then
consist of 1,024 rows and corresponding columns for the
actuators. The overhead of specification and testing entailed
by use of the switching matrix would not be justifiable in this
case. Completion of the switching table alone would probably
result in a few errors creeping in. If a matrix similar to that in
Figure 18 were used, ten rows would be required. Completion

of these, including the entries with blue highlighting, would
involve little effort. The authors advocate a pragmatic approach
to software validation in practice: an approach which, although
it fails to provide full test coverage, can be carried out by and
is comprehensible to a wide group of persons. This is possible,
for example, by means of the D1 validation columns proposed
in Table 8 and Figure 18. This also provides full transparency of
what has been checked, when, and by whom. Information on
appropriate test coverage can be found in Section 5.11.

Software validation (document D1) comprises the following
parts:

• Analysis: of verification (documents B3, B4), code review (C1),
normative requirements (A4), safety functions (A1)

• Real-case functional test: of the I/O list and the C&E matrix
(documents A2.4, B4)

Review activities should preferably be performed in observance
of the two-man rule (Section 5.15).

In addition to the activities described here for specification and
review of the application software, the manufacturer-specific
parameterizations of the system components (safety PLCs, I/O
cards, frequency inverters, sensors, etc.) must also be specified
and tested during software validation. For example, correct
safety-related parameterization of frequency inverters must be
checked and documented (see documents in Table 12).

46

6 Development of safety-related application software

Validation, and also external audit of the software, require all
necessary documents to be created and retained.

Specifically, the documentation should contain:

• Documents of the V-model from the Excel file

• PDF printout of all safety-related software, including checksum

• PDF printout of the hardware configuration (with all settings),
including checksum

• Archiving of the manuals for all system components, as
changes may occur over time, resulting in the installed status
no longer lending itself to documentation at a later date

• PDF printout of the manufacturer-specific configuration of
peripheral devices, including checksums

• Manufacturer’s approval regulations (e.g. for the parameters
of a safety PLC or a safety variable frequency drive); these are
usually found in the system manuals

• Specifications to be complied with from Type C standards for
special machines (e.g. presses)

• Further relevant standards and documents

For documentation purposes, PDF is proposed here as a
data format owing to its ubiquity, as external auditors do not
necessarily have access to all system software applications.

6�9 Compact software specification

The presentation of the C&E matrix in Figure 18 may not be
suitable for greater numbers of actuators (such as several
hundred actuators in rolling mills) and sensors. For this

reason, alternative, compact presentations are described here.
For better management of larger numbers of actuators in a
table, transposition to the presentation shown in Figure 18 is
recommended. This transposition is performed automatically
when SOFTEMA (Chapter 14) is used. However, the larger the
number of actuators, the greater the number of relevant input
variables. Transposing the C&E matrix is therefore likely to
make presenting the input variables difficult. For this reason,
this presentation shows the information on the input variables
involved only in very rudimentary form. The assumption here
is that an experienced tester knows specifically how to handle
these input variables during software validation. They must be
aware that a guard door , for example, is to be opened during
the test. They must know that an emergency stop button, for
example, is to be pressed during the test. Figure 21 shows the
transposed and reduced presentation of the C&E matrix in this
example.

Figure 21 is clearly much more compact than Figure 18. It
also contains less detailed information; this, however, is not
necessarily a drawback in industrial practice. The entries in blue
font fully specify the processing stage of the actuators on the
left. The input variables involved are summarized below.

In this new presentation, however, the direct relationship
between the fields of the matrix describing the de-energizations
and the safety functions defined in Table 7 is lost, as the latter
are formulated with respect to the sensors. The “SFs involved”
column is intended to provide an overview and establish the
relationship to the safety functions concerned.

An even more compact presentation of Figure 21 involves
omission of the entries for the input signals (Figure 22). This is
conditional upon experienced testers being able to determine
from the variable names which sensors/input signals are to be
actuated.

Figure 21:
Transposed and reduced presentation of the C&E matrix (document B4)

SFs
involved

Output Description Automatic mode of operation
OK/not

OK Name Date
OK/not

OK Name Date
EMST_OK&SG1_OK &
(SG2_OK v SG3_OK)

QS_M1 Motor M1 EMST, IS_SG1,2,3_1,2 1, 2, 4
EMST_OK&SG2_OK

QS_M2 Motor M2 EMST, IS_SG2_1,2 1, 3
EMST_OK&IS_SL_SG2

QS_M3 Motor M3 EMST, IS_SL_SG2 1, 5

Date:
Tester:

Software consistent with the
matrix documentation Function tested

D1C1

Software signature:
V1

Verification performed (OK / not OK):

Actuators Switch offs

47

6 Development of safety-related application software

Figure 22:
Further compressed matrix (document B4)

SFs
involved

Output Description Automatic mode of operation
OK/not

OK Name Date
OK/not

OK Name Date

QS_M1 Motor M1
EMST_OK&SG1_OK &
(SG2_OK v SG3_OK) 1, 2, 4

QS_M2 Motor M2 EMST_OK&SG2_OK 1, 3
QS_M3 Motor M3 EMST_OK&IS_SL_SG2 1, 5

Date:
Tester:

V1
Verification performed (OK / not OK):

Actuators Switch offs
Software consistent with the

matrix documentation Function tested

D1C1

Software signature:

The processing stage is described in full with the output signals
of the outputs stage. If more complex signals are formed or
several signals grouped in the inputs stage, it may be difficult
to list all the inputs involved. In this case, the very compact
presentation as shown in Figure 22 is recommended.

6�10 Notes on the inputs stage

Note here that the inputs stage cannot always be presented
as simply as in Figure 20. In more complex cases, the project
planning task consists of combining signals in the inputs
stage logically such that the output variables of the logic can
be used directly in the ACT module to drive actuators. The
specified negative logic must be observed for inputs modules
for safeguards:

• Output variable = TRUE/1: the safeguard is not tripped;
hazards are present, but safeguarded

• Output variable = FALSE/0: the safeguard is tripped, hazards
must be de-energized

An example of such signal grouping is shown in Figure 23. In this
example, monitoring of the stationary state (safe operating stop)
of several axes is grouped in a single stationary state signal. The
example of the „Machine tool“ (Section 7.5) shows a practical
application for this grouping.

Figure 24 shows an example of a time-controlled door release
being enabled in the inputs stage. The demand for the door to
be unlocked (pushbutton I_OP_SG) sets a flip-flop. Once the
parameterizable time TIME has elapsed, the unlocking signal
S_UNLOCK is output. Complete opening of the door resets
the F_TON timer. It would be useful to encapsulate the logic in
Figure 24 in a reusable library module.

The transition time until the door is opened cannot be read in
the matrix. During the functional test, this information must be
read from the definition of the safety function.

Transferring timing aspects and the combination of complex
signals to the inputs or outputs stages usually enables the ACT
processing logic to be limited to purely binary logic (AND, OR,
NOT).

Figure 23:
Summary of stationary-state signals in the
inputs stage

&

IS_ACHSE_A_SOS

IS_ACHSE_B_SOS

IS_ACHSE_C_SOS

IS_ACHSE_D_SOS

IS_ACHSE_E_SOS

M_SOS_GES

48

6 Development of safety-related application software

Figure 24:
Example of a timer-controlled door release
in the inputs stage

6�11 Consideration of multiple
operating modes and function
blocks developed in-house

The above example will now be extended with the addition of
a setup mode (as in the example in Section 7.2). This example
clearly shows the difference between the operating modes.
In addition, the example implements use of a function block
developed in-house for driving a motor with safely limited speed
(SLS). Development of such a function block is described in
Section 6.12.

Figure 25 shows the system sketch (document A2.1) of the robot
cell with integrated setup mode for axis M2.

Figure 25:
System sketch (document A2.1) of a robot cell with setup mode

 Vertical guard SG3

Fa
st

-m
ov

in
g

ga
te

 S
G

2

M2

Emergency stop

Acknowledgement

 Mould carrier

M3

G
ua

rd
 d

oo
r S

G
1

 3S1 3S2

 Setup mode Enabling button

Robot

M1

In addition to the function from the previous example, the
mould carrier (M2) can be moved in setup mode at a safely
limited speed with the fast-moving gate open and the vertical
guard closed, by means of two enabling buttons arranged at
different points. As soon as the speed of the motor becomes too
high, it switches off safely.

The risk assessment thus yields seven safety functions. The first
five are unchanged from the previous example. Table 13 shows
the safety functions of the robot cell with setup mode.

Figure 26 shows the circuit diagram for this example. The only
change with respect to the previous example is the addition
of the two push buttons 3S1 and 3S2. The motor M2 is now
controlled by a frequency inverter with integral safety functions.

Use of a drive with integral safety functions in this example
has resulted in significant changes to the system structure
(document A2.3). A drive with field bus interface has now been
added. Figure 27 shows the system structure.

Table 14 (Page 50) shows the symbol table for this example.
Changes with respect to the previous example arise from the
two push buttons at the inputs and actuation of the frequency
inverter safety functions at the outputs.

RS

S

R1 Q1

F_TON

IN

PT Q1 S_UNLOCKTIME

I_OP_SG

IS_SG_1

IS_SG_2
&

49

6 Development of safety-related application software

Table 13:
Safety functions (document A1) of the robot cell with setup mode

No Description PLr Response time in ms Priority Operating mode

SF1 When the emergency stop EMST is actuated, M1,
M2 and M3 are switched off.

d 100 1 All

SF2 When the guard door SG1 is opened, M1 is
switched off.

d 100 1 All

SF3 When the fast-moving gate SG2 is opened, M2 is
switched off.

d 100 2 Automatic mode

SF4 When the fast-moving gate SG2 is opened and
the vertical guard SG3 is opened, M1 is switched
off.

d 100 1 All

SF5 When the edge protection sensor SL_SG2 of the
high-speed guard SG2 is actuated, the motor M3
is switched off.

d 100 1 All

SF6 When the fast-moving gate SG2 is open, the verti-
cal guard SG3 is closed and the push button 3S1
is depressed, SLS is enabled for M2 (SLS active).

d 100 2 Setup mode

SF7 When the high-speed guard SG2 is open, the
vertical guard SG3 is closed and the push button
3S2 is depressed, SLS is enabled for M2 (SLS
active).

d 100 2 Setup mode

Figure 26:
Circuit diagram (document A2.2) of the robot cell with setup mode

VS VS VS VS VS VS VS VS VS VS VS VS VS VS VS VS VS VSI9.5I8.4 I10.0 I8.0 I9.4 I8.1 I9.1 I10.5I8.2 I9.6 I8.3 I9.7 I8.5 I10.1

Q24.2 -

I4.0

Safety PLC

+ Q24.0 - + Q24.1 - +

I8.6 I8.7 I9.0 I10.4

Emergency
stop

Emergency
stop

-1S1

L +
L -

3B1 -3B2 -2B1 -2B2 -1B1 -1B2

-1K1 -1K2 -3K1 -3K2

-2S1

-3B1 3B1-1K2 3B1-3K2

-3S1-1K1 -3K1

L +

-4S1

-3S2

SG3
CHANNEL 1

SG3
CHANNEL 2

SG2
CHANNEL 1

SG2
CHANNEL 2

SG1
CHANNEL 1

SG1
CHANNEL 2

SG4
CHANNEL 1

SG4
CHANNEL 2

Edge protection
sensor CHANNEL

1

Edge protection
sensor CHANNEL

2

Feedback M1 Feedback M3 Push button1
CHANNEL 1

Push button1
CHANNEL 2

Push button2
CHANNEL 1

Push button2
CHANNEL 2

Acknowledgement
button

Contactors M1 Contactors M3

-2K1 -2K2

Contactors M2

50

6 Development of safety-related application software

Table 14:
Symbol table (document A2.4) of the robot cell with setup mode

D1 C1

Signals Variable Address Validated
(OK/not OK)

Correct connections
verified in the software

(OK/not OK)

Inputs

Emergency stop, two-channel (NC) (1S1, 1S2, 1S3) IS_EMST %I8.4

Contact 1 guard door SG1 (NC) (1B1) IS_SG1_1 %I8.2

Contact 2 guard door SG1 (NO) (1B2) IS_SG1_2 %I9.6

Contact 1 fast-moving gate SG2 (NC) (2B1) IS_SG2_1 %I8.1

Contact 2 fast-moving gate SG2 (NO) (2B2) IS_SG2_2 %I9.5

Contact 1 vertical guard SG3 (NC) (3B1) IS_SG3_1 %I8.0

Contact 2 vertical guard SG3 (NO) (3B2) IS_SG3_2 %I9.4

Edge protection sensor of SG2, two-channel (NC) (2S1) IS_SL_SG2 %I8.5

Feedback contactors M1 (NC) (1K1, 1K2) IS_SM1 %I8.6

Feedback contactors M3 (NC) (3K1, 3K2) IS_SM3 %I8.7

Push button 1 SLS, two-channel (NO) (3S1) IS_TIP_1 %I9.0

Push button 2 SLS, two-channel (NO) (3S2) IS_TIP_2 %I9.1

Safety error message FI IS_Err_FU %I32.7

Acknowledgement button (NO) (4S1) I_ACK %I4.0

Outputs

Contactor motor M1 (1K1, 1K2) QS_M1 %Q24.0

Contactor motor M3 (3K1, 3K2) QS_M3 %Q24.2

Activation of STO for M2 QS_M2_STO %Q32.0

Activation of SLS for M2 QS_M2_SLS %Q32.4

Activation of SS1 for M2 QS_M2_SS1 %Q32.1

Activation of SS2 for M2 QS_M2_SS2 %Q32.2

Activation of SOS for M2 QS_M2_SOS %Q32.3

Acknowledgement of FI safety error QS_M2_ACK_FI %Q32.7

 Date:

Name:

Software signature:

Figure 27:
System structure (document A2.3) of the robot cell
with setup mode

Sa
fe

ty
 P

LC

24
 S

D
I (

I8
.0

-1
0.

7)

16
D

I (
I4

.0
-5

.7
)

10
SD

O
 (Q

24
.0

-2
5.

1)

Fr
eq

ue
nc

y
in

ve
rte

r

Fieldbus
Safety profile to EN 61784-3

C
1

System structure tested (ok / not ok):
Date:

Tester:

51

6 Development of safety-related application software

The catalogue of measures for fault avoidance (document A3),
the normative requirements (A4), the architecture of the safety
program (B1), the architecture of the standard program (B2) and
the code review (C1) are unchanged with respect to the previous
example.

Figure 28 shows the modular architecture (document B3) of
the example. Of the examples shown here, this is the first
containing a function block (EN_SLS) which is to be developed
by the programmer themselves.

The outputs for the safe frequency inverter for the motor M2
can be seen in the modular architecture. These commands are
explained briefly below (see DIN EN 61800-5-2):

• STO (safe torque off): When the STO command is activated,
supply of power to the drive is switched off safely and the
drive coasts to a halt.

• SLS (safely limited speed): The SLS command is used
to monitor a specified maximum speed. Monitoring is
independent of the direction of the motor’s rotation. If this
speed is exceeded, STO is automatically activated in the
frequency inverter.

• SS1 (safe stop 1): The SS1 command brings about a category 1
stop in accordance with DIN EN 60204-1. The drive is braked
to a halt within a parameterizable time and the power supply
then switched off with STO.

• SS2 (safe stop 2): The SS2 command also causes the drive to
be braked to a halt within a parameterizable time. In this case,
however, the safe standstill of the drive is then monitored with
SOS.

• SOS (safe operating stop): The SOS command is used for safe
monitoring of the drive’s stationary state. Should the motor
still turn, the power supply to the drive is switched off with
STO.

• All safety functions are activated with a FALSE/0 signal
(negative logic): should communication with the control
system fail, all safety functions are active and the drive stops.
For this reason, all safety functions that are not in use (SS1,
SS2, SOS) are deactivated with the TRUE signal.

• The output QS_M2_ACK_FI is used to acknowledge faults in
the frequency inverter.

52

6 Development of safety-related application software

Figure 28:
Modular architecture (document B3) of the robot cell with setup mode

Inputs stage Outputs stage
ACT module

Emergency stop
EMST_OK

IS_EMST

Guard door SG1 Contactors M1
SG1_OK

IS_SG1_1 QS_M1
IS_SG1_2

Fast-moving gate SG2 Contactors M3
SG2_OK

IS_SG2_1 SF_EDM QS_M3
IS_SG2_2

Vertical guard SG3
SG3_OK

IS_SG3_1 QS_M2_STO
IS_SG3_2

Enable SLS
EN_SLS QS_M2_SLS

IS_TIP1 EN_SLS
IS_TIP2

IS_SL_SG2

Certified library modules

Library modules developed in-house

Processing stage developed in-house

Verification performed (OK / not OK):
V1 Date:

Tester:

A
ct

ua
tio

n
(s

pe
ci

fic
at

io
n

by
 m

at
rix

)

SF_Emergency
Stop

SF_EDMSF_Guard
Monitoring

SF_Guard
Monitoring

SF_Guard
Monitoring

The function block EN_SLS must be specified. The EN_SLS signal
activates the QS_M2_SLS output with the FALSE signal. Since
the safety functions of the frequency inverter are all activated
with FALSE, it is also advantageous to define the output of the
function block in negative logic.

Figure 29 shows the C&E matrix (document B4) of the robot cell
with setup mode. In the interests of clarity, the states of the
input signals are not shown. The first five safety functions are
the same as before. An initial state is defined for setup mode
(state 7, highlighted in white). From this state, the motor M2 can
be moved at a safely limited speed. The matrix also contains a
test row with a test case (state 7).

Any number of rows containing test cases can be added to
the C&E matrix for further tests (highlighted in yellow in this
example).

This matrix is the first to show negations of the variables, which
are indicated by a preceding slash.

Attention is drawn again to the completion rules for the ACT
actuation module:

Step 1: For each individual safety function triggering a switching
operation on an actuator (from the previous state), the logical
combination of the ACT input variables triggering the switching
operation is entered in the relevant cell of the table according
to the operating mode. This switching process is indicated here
by “OFF” or “ON”. Where a safety function does not trigger a
switching operation on an actuator, “NOP” must be entered in
the cell.

53

6 Development of safety-related application software

Figure 29:
C&E matrix (document B4) of the robot cell with setup mode

Cause

M
od

e
of

 o
pe

ra
tio

n

Pr
ec

ed
in

g
st

at
e

in
 th

e
te

st

St
at

e

Description Q
S_

M
1

(Q
24

.0
)

Q
S_

M
2_

ST
O

 (Q
32

.0
)

Q
S_

M
2_

SL
S

(Q
32

.4
)

Q
S_

M
3

(Q
24

.2
)

Ac
kn

ow
le

dg
em

en
t

 (I
_A

C
K

(I4
.0

)

Tested
(OK/not OK) Name Date

C1: Software consistent with the matrix
notation

1 ALL_OK ON ON ON ON
EMST_OK EMST_OK EMST_OK

1 2 SF1: Emergency stop actuated OFF OFF NOP OFF
SG1_OK

1 3 SF2: SG1 open OFF NOP NOP NOP
SG2_OK&
EN_SLS

1 4 SF3: SG2 open NOP OFF NOP NOP
SG2_OK v
SG3_OK

1 5 SF4: SG2 and SG3 open OFF NOP NOP NOP
SL_SG2_OK

1 6 SF5: Edge protection sensor actuated NOP NOP NOP OFF

7
SG2 open, SG3 closed, IS_TIP1, 2 not
actuated NOP OFF ON NOP

/EN_SLS EN_SLS
7 8 NOP ON OFF NOP

/EN_SLS EN_SLS
7 9 NOP ON OFF NOP

7 10
SG2 open, SG3 closed, IS_TIP_1, 2
actuated NOP OFF ON NOP

Date:
Name:

Automatic mode
Setup mode
All

SF6: SG2 open, SG3 closed, IS_TIP_1
actuated ON
SF7: SG2 open, SG3 closed, IS_TIP_2
actuated ON

D1

ON

ON

ON

ON

ON

Effect
Outputs

V1
Verfication performed (OK/not OK): Software signature:

Several examples of the safety functions SF3, SF4 and SF5 from
Figure 29 are described below.

• When SF3 is activated in the automatic operating mode by the
opening of SG2, M2 is switched off by STO from the previous
All_OK state, unless safely limited speed (SLS) has been
activated for M2. SG2_OK & EN_SLS must therefore be entered
in this cell.

• When SF4 is activated in the “all” operating mode by the
opening of SG2 and SG3, M1 is switched off. SG2_OK v
SG3_OK must therefore be entered in this cell. NOP must be
entered for QS_M2_STO, as M2 is not affected by this safety
function in this operating mode.

• If SF6 is activated in setup mode by push button IS_TIP_1
being pressed whilst guard door SG2 is open and guard
door SG3 is closed, QS_M2_STO is switched on (ON: i.e. STO
deactivated in this case) and QS_M2_SLS is switched off (OFF:
i.e. SLS enabled in this case). The negated variable /EN_SLS
must therefore be entered for QS_M2_STO and the variable
EN_SLS (enabled by EN_SLS = FALSE) for QS_M2_SLS.

Step 2: The inputs of the AND elements in Figure 16 are derived
as follows from Figure 29: for each output and each operating
mode, only the variables entered must be linked by AND.

Figure 30 shows the program sketch. The structure of the
actuation module shown in Figure 16 can be clearly seen in the
ACT module at the output QS_M2_STO. On the right-hand AND,
(EMST_OK) is the condition for all operating modes. Before
it, to the left, is an OR condition with the automatic operating
mode (SG2_OK & EN_SLS) and the setup operating mode (NOT
(EN_SLS)).

The SLS safety function can also be used in combination with
the SS2 safety function. The drive then remains under closed-
loop control and is monitored for safe standstill with SOS if no
push button is actuated. For the sake of simplicity, this has not
been implemented here.

For the sake of completeness, Figure 31 shows the compact
presentation of the matrix.

An additional table showing test cases has been created
here to permit further useful tests with the compact form of
presentation. Figure 32 shows the entries for additional test
cases.

54

6 Development of safety-related application software

Figure 30:
Program sketch of the robot cell with setup mode

 Inputs stage ACT module Outputs stage

Emergency stop EMST EMST_OK
 EMST_OK SG1_OK SF_EDM

IS_EMST & QS_M1
 SG2_OK

≥1
Guard door SG1 SG3_OK

SG1_OK
IS_SG1_1
IS_SG1_2 SF_EDM

 EMST_OK QS_M3
Fast-moving gate SG2 &

SG2_OK IS_SL_SG2
IS_SG2_1
IS_SG2_2

EMST_OK
Vertical guard SG3

SG3_OK SG2_OK
IS_SG3_1 ≥1 &
IS_SG3_2 EN_SLS ≥1 QS_M2_STO

 EN_SLS

 IS_SL_SG2

EN_SLS QS_M2_SLS
IS_SG2_1
IS_SG2_2 EN_SLS

 SG3_OK EN_SLS
 IS_TIP_1

 IS_TIP_2 TRUE QS_M2_SS1
IS_Err_FU

TRUE QS_M2_SS2

TRUE QS_M2_SOS

I_ACK QS_M2_ACK_FU

SF_Emergency
Stop

SF_Guard
Monitoring

SF_Guard
Monitoring

SF_Guard
Monitoring

Figure 31:
Compact matrix presentation for the example of the robot cell with setup mode

SFs
involved

Output Description Mode of operation, all

Automatic
mode of

operation
Setup mode
of operation

OK/not
OK Name Date

OK/not
OK Name Date

QS_M1 Motor M1
EMST_OK & SG1_OK &
(SG2_O v SG3_OK) 1, 2, 4

QS_M2_STO Motor M2 STO EMST_OK SG2_OK &
EN_SLS /EN_SLS 1, 3, 6, 7

QS_M2_SLS Motor M2 SLS EN_SLS 6, 7
QS_M3 Motor M3 EMST_OK & IS_SL_SG2 1, 5

Date:
Name:

Actuators Switch offs C1 D1
Software consistent with the

matrix documentation Function validated

V1
Verification performed (OK / not OK): Software signature:

Figure 32:
Additional test cases for the example of the robot cell with setup mode

OK/not OK Name Date

D1
Validated

Test case Reaction

SG2 open, SG3 closed, both Push buttons
IS_TIP_1 and IS_TIP_2 not actuated

SLS not enabled

SG2 open, SG3 closed, both Push buttons
IS_TIP_1 and IS_TIP_2 actuated

SLS not enabled

Additional test cases

55

6 Development of safety-related application software

6�12 Addressing of configurable safety
controls

Besides the use of freely programmable PLCs with a
typical PLC language (FBD, LD, e.g. in accordance with
DIN EN ISO 61131-3 [12]), safety functions can increasingly
also be implemented with compact, graphically configurable
control systems. The question then arises as to the applicability
of the normative requirements for SRASW to such systems,
as DIN EN ISO 13849-1, for example, describes requirements
of its own for “software-based parameterization” in Section
4.6.4. This Section, however, was intended by the standards
committee to address control devices such as sensors or drive
controls whose functions can be parameterized, but not logically
linked.

Programming tools with a simple graphical user interface
are typical for this type of configurable controller. Function
blocks can be placed and linked to each other, i.e. with inputs
and outputs, in a graphical editor. The function blocks must
then be parameterized: in exactly the same way, in fact, as
in a conventional PLC, but with no facility for the use of text-
based programming languages. Although these controllers are
advertised as being quick and easy to configure, they are still
susceptible to logic errors in the same way as their “larger”
counterparts.

The programs of such controllers must therefore be regarded
as SRASW, and can be specified, validated and documented
by means of the IFA matrix method. An example is shown in
Section 7.10.

6�13 Matrix-based documentation
of function blocks developed
in-house

The procedure for use of the IFA matrix method for creating
specifications for function blocks developed in-house will now
be described. The description is based on the example of the
robot cell with setup mode with reference to the EN_SLS function
block.

The simplified V-model for development of function blocks
(Figure 7, see Section 5.4) is used to create the specification for
the EN_SLS function block. The associated documents are listed
in Table 2, Section 5.5.

Figure 33 shows the description of the interface (document AM1)
for the function block. It contains a description of the function,
and all inputs and outputs are stated with symbolic name, data
type and comment.

The catalogue of measures for fault avoidance for a function
block developed in-house is somewhat more compact than that
for the full application program. Tables 15 and 16 show examples
of general and controller-specific measures for the development
of function blocks (document AM2).

Figure 33:
Description of the interface (document AM1) of the EN_SLS function block

Name Data type Initial value Description, parameter values
bSG1_1 SAFEBOOL FALSE Contact 1 of SG1. FALSE: Door open. TRUE: Door closed.
bSG1_2 SAFEBOOL FALSE Contact 2 of SG1. FALSE: Door open. TRUE: Door closed.
bSG2 SAFEBOOL FALSE Outputs of SF_Guardmonitoring FB for SG2. FALSE: Door open. TRUE: Door closed.
bTIP_1 SAFEBOOL FALSE Enable button 1. FALSE: Button not actuated. TRUE: Button actuated.
bTIP_2 SAFEBOOL FALSE Enable button 2. FALSE: Button not actuated. TRUE: Button actuated.
bERROR SAFEBOOL FALSE Frequency inverter error. FALSE: No error. TRUE: Error.

bEN_SLS SAFEBOOL TRUE Enable signal for SLS. FALSE: Release granted. TRUE: No release for Enable SLS.
Notes: None

Outputs

FB name: EN_SLS
Description of the function

The EN_SLS function block generates the EN_SLS enable signal for the safely limited speed (SLS). The enable is issued with a logical 0. For
the enable to be issued, the Guard door SG1 must be open (0 signal at bSG1_1 and bSG1_2), the Guard door SG2 must be closed and
acknowledged (1 signal at bSG2), there must be no error in the frequency inverter (0 signal at bERROR), only one enable push button
(bTIP_1 or bTIP_2) is actuated. The positive edges of the two buttons are evaluated to prevent an automatic restart.

Inputs

56

6 Development of safety-related application software

Table 15:
Example catalogue of general measures for fault avoidance for in-house development of function blocks

CM1

Abbreviation Implemented
(y/n)

A� Variables

Prefixes for Boolean variables: “b”. RMA1

Prefixes for instances: timers: “T_”; rising edge detection: “R_”; flip-flops: “FF_” RMA2

Variable names: the variable name following the prefix should be self-explanatory, e.g. containing the name of
the relevant functional unit.
Example: ..SG1.. for the guard door SG1.

RMA3

Variable declaration: initialization with the safest value. Each declaration contains a comment. RMA4

Interface: each function block communicates with the environment solely through the input/output variables. RMA5

Global variables: not permitted. RMA6

B� Signal processing

Assignments: variables are assigned in a single program statement only. RMB1

Comments: each network contains one comment. RMB2

Protection: the function block is protected by a password. RMB3

C� Library modules

Use: wherever possible, library modules should be used. RMC1

Date:

Name:

Software signature:

Table 16:
Example catalogue of controller-specific measures for fault avoidance for in-house development of function blocks

CM1

Abbreviation Implemented
(y/n)

Program editor/programming language

Program editor used Safety Editor V10.1 RS1

Programming language Function Block Diagram (FBD) RS2

Software library Safety Library V3.2 RS3

 Date:

Name:

Software signature:

Figure 34 shows the module specification with the grey
verification and validation fields (document BM1) for the
function block EN_SLS. The behaviour of the output is described
here again briefly and presented in the form of a C&E matrix.
Here too, the C&E matrix serves as a basis for testing and for
specification of the software. The model of the function block
EN_SLS consists of a “set dominant” flip-flop, which is set/reset
by the OR combinations alluded to in Figure 34.

For programming, the logical operations shown by the variables
highlighted in colour are linked by OR operations for the set and
reset input of the flip-flop.

Figure 35 shows the program sketch (document BM2) of the
EN_SLS module, from which the system structure can clearly
be seen . Table 17 shows the code review (document CM1) for a
function block developed in-house.

The module test protocol (document DM1) is derived from the
validation columns on the right in Figure 34 (document BM1).

This method can be used to define and test simple function
blocks (i.e. consisting essentially of flip-flops and AND and OR
operations). The test is usually performed during simulation.
The set and reset logic of EN_SLS is relatively simple and
can therefore be described by a matrix notation as shown in
Figure 34 (including test plan). Specification by means of a
matrix is not possible with more complex function blocks; for
such cases, refer to the specification methodology developed by
PLCopen [8].

57

6 Development of safety-related application software

Figure 34:
Module specification and test plan of the function block EN_SLS (document BM1), EQ = EQUIVALENT, / = NOT, > = rising edge

Output

1 0 0 1 0 0 0 ON

>bTIP_1
1 2 0 0 1 1 0 0 OFF

>bTIP_2
1 3 0 0 1 0 1 0 OFF

bSG1_1
2 4 1 0 1 1 0 0 ON

bSG1_2
2 5 0 1 1 1 0 0 ON

/bSG2
2 6 0 0 0 1 0 0 ON

berror
2 7 0 0 1 1 0 1 ON

bTIP_1 EQ
bTIP_2

2 8 0 0 1 0 0 0 ON

bTIP_1 TRUE,FALSE;
bTIP_2 TRUE, FALSE

berror TRUE

VM1 Software signature:
Verification correct (Y/N):

OR

bSG2 FALSE

bSG1_2 TRUE

Se
t

bSG1_1 TRUE

OR

OR

OR

R
es

et bTIP_1 TRUE,

bTIP_2 TRUE

Date

C1: Software consistent
with matrix specification

bTIP_1, 2 FALSE, SG1
open, SG2 closed, berror
FALSE

bT
IP

_1

bT
IP

_2

be
rr

or

bE
N

_S
LS

NameCorrect
(Y/N)

OR

Inputs Description DM1

Fl
ip

-fl
op

Pr
ec

ed
in

g
st

at
e

St
at

e

bS
G

1_
1

bS
G

1_
2

bS
G

2

Cause Effect

Description

EN_SLS is realized by a "set dominant" Flip-flop. The Flip-flop is
set by an OR connective. The reset is again realized by an OR
connective. The inputs of these OR links are specified below by
the colored variables listed in the "effect" column. The expected
value of the function block's Outputs is also shown in the "effect"
column.

Figure 35:
Program sketch (document BM2) of the module EN_SLS

bSG1_1

bSG1_2

bSG2

berror

bTIP_1
EQ

 SR
bTIP_2 S1

bTIP_1
R Q1 bEN_SLS

bTIP_2

≥1

≥1

FF_ENSLS

Table 17:
Code review (document CM1) for function blocks developed
in-house

Verifications Reference: Yes/no

1. Have the agreed program-
ming rules been observed?

Measures AM2

2. Have the agreed tools been
used?

Measures AM2

3. Is the code consistent with
the matrix specification?

3. Is the code consistent
with the interface descripti-
on AM1/module specifica-
tion BM1?

Date:

Name:

Software signature:

58

6 Development of safety-related application software

6�14 Summary of the matrix-based
documentation

The essential observations of this chapter are as follows:

• A pragmatic and transparent procedure is stated for working
through the further simplified V-model. This serves as a
common thread.

• This procedure is independent of the controller, the specified
PLr and the (suitable) programming language employed.

• The key points of the procedure are:

 – Division of the software into inputs, processing stage and
outputs stages.

 – Description of the processing logic by means of a C&E
matrix (or a transposed and reduced C&E matrix, which is
particularly suitable for larger numbers of safety functions).

 – The matrix presentations make the individual operating
modes transparent.

 – The matrix presentation can be used to create a
specification for the application program, and to verify and
validate it comprehensibly.

 – Additional test cases can be added to the matrix to extend
the test coverage.

 – In principle, the matrix can be used to generate code and
make working with a safety PLC much easier.

• Software validation consists of analyses (verification, code
review) and functional tests (I/O list, C&E matrix). In practice,
full test coverage is difficult to achieve, and a pragmatic
approach must be adopted (Section 5.11).

• Simple function blocks (library modules) developed
in-house can be specified and tested by means of similar
matrix methods. For more complex function blocks, refer to
PLCopen [8].

• The specification and the test plans for further manufacturer-
specific details (e.g. for parameters of I/O cards, parameters
of frequency inverters, etc.) must also be created and edited.

Figure 36 shows once again the relationships between the
documents and activities in the V-model, in this case in
summarized form. The figure shows the documents of the
V-model and their relationships to the activities to be reviewed.
The hardware is reviewed in documents A2.3 and A2.4 and the
program in documents A2.4, A3, B1, B3 and B4. “A” stands for
the analyses and the “T” for functional test. “C1” or “D1” on
the arrows indicates directly whether it concerns a part of the
code review or software validation, respectively. As can be seen
from the dashed arrow, documents B3 and B4 must be verified
against the specification of the safety functions (A1).

Note: The matrix method shown here can also be used for
compact presentation of switching operations that are not
relevant to safety.

Figure 36:
Relationship between the documents of the
V-model (italics = optional); A = analysis,
T = test, C1 = Protocol of code review,
D1 = Protocol of software validation

A1: Specification of the safety functions

A2.1: System sketch

A2.2: Circuit diagram

A2.3: System structure

A2.4: I/O list

A3: Catalogue of measures for fault avoidance

A4: Requirements

B1: Safety program architecture

B2: Standard program architecture

B3: Modular architecture

B5: Program sketch

Code

Verification

Hardware
C1:A

C1:A

C1:A

C1:A, D1:T

C1:A

C1: A
C1:A

D1:T

59

6 Development of safety-related application software

6�15 Procedure for modifications

Process software may require adaptation, for example following
modifications to a machine’s functions or to the hardware.
This applies in equal measure to the safety software: safety
concepts are modified, additional safeguards are installed, or a
safeguard’s influence on the machine’s work process is altered.

Modifications to software require steps to be retraced in the
software development V-model. The more far-reaching the
change, the further back in the V-model the process must be
recommenced. A method for modifying software is shown here
with reference to an example.

Change management comprises the following steps:

1. Impact analysis: entry of the change on the “Change history”
form (see Table 18 for an example), with a description in
plain text and listing of the affected documents.

2. The changes in the documents stated are marked, for
example in colour.

3. If at all possible, the changes should be verified by a second
person.

4. Programming of the change.

5. If possible, the code review should be performed by a
second person.

6. The changes are validated (I/O-check in the event of new
signals; functional test).

7. Following successful validation, the colour markings are
removed again.

8. Version archiving of all affected documents.

This procedure will now be demonstrated with reference
to the example of the robot cell described in the previous
chapter. A modification is made in the form of installation of an
additional guard door to facilitate access for the performance
of maintenance work (corresponding to the example in
Section 7.3). Table 18 shows the entry in the change history,
including analysis of which documents are affected. Since
addition of a further guard door requires two new safety
functions to be integrated, the V-model for the modified part
must be followed again in full. The names of the documents
correspond to those in Table 1 for the V-model documents.

In the interests of clarity, the modified system sketch (document
A2.1) is first shown in Figure 37. The guard door SG4 is a new
addition.

The new guard door brings with it two new safety functions, SF6
and SF7. These ensure that the motor M2 behind the guard door
is switched off when the guard door is opened, and that the
motor M1 is switched off when the guard door s SG4 and SG3 are
open.

Table 19 lists the safety functions (document A1) with the new
safety functions SF6 and SF7 (in red). The operating mode was
not stated, as automatic mode is the only operating mode in this
example.

The new guard door SG4 has resulted in the addition of two
further inputs to the circuit diagram, for monitoring the guard
door . Figure 38 shows the modified circuit diagram with colour-
coded contacts (document A2.2).

These two new inputs result in changes to the I/O list (document
A2.4). They are added to Table 20, marked in red.

Table 18:
Example of a change history (based on the example of the robot cell)

No Date Modification
performed by

Document Modification

1 09.01.2013 M. Muster A1, A2.1, A2.2, A2.4, B3, B4, B5 Guard door 4 added for performance of maintenance work on the
mould carrier

2

3

4

5

60

6 Development of safety-related application software

Figure 37:
System sketch (document A2.1) of the robot cell with additional
guard door

 Vertical guard SG3

Fa
st

-m
ov

in
g

ga
te

 S
G

2

M2

Emergency stop

Robot

Acknowledgement

M1

Mould carrier

M3

G
ua

rd
 d

oo
r S

G
1

Guard door SG4

Table 19:
Safety functions (document A1) of the robot cell with additional guard door

No Description PLr Response time in ms Priority

SF1 When the emergency stop EMST is actuated, M1, M2 and M3 are
switched off.

d 100 1

SF2 When the guard door SG1 is opened, M1 is switched off. d 100 2

SF3 When the fast-moving gate SG2 is opened, M2 is switched off. d 100 2

SF4 When the fast-moving gate SG2 is opened and the vertical guard
SG3 is opened, M1 is switched off.

d 100 2

SF5 When the edge protection sensor SL_SG2 of the high-speed guard
SG2 is actuated, the motor M3 is switched off.

d 100 2

SF6 When the guard door SG4 is opened, M2 is switched off. d 100 2

SF7 When the guard door SG4 is opened and the vertical guard SG3 is
opened, M1 is switched off.

d 100 2

61

6 Development of safety-related application software

Figure 38:
Circuit diagram (document A2.2) of the robot cell with additional guard door

VS VS VS VS VS VS VS VS VS VS VS VS VS VS VS

+ Q24.0 - + Q24.1 -

I9.5 I8.6

+ Q24.2 -

I10.2 I8.7 I4.0

Safety PLC

I8.2 I9.6 I8.3 I9.7 I8.5 I10.1I8.4 I10.0 I8.0 I9.4 I8.1

-1S1

-2B1-3B2-3B1

-1K1 -2K1

-1K2 -2K2

-3K1

-3K2

Emergency
stop

Emergency
stop

-1K1 -1K2

L +
L -

-2B2 -1B1 -1B2

-2K1 -2K2 -3K1 -3K2

-2S1 L +

-3S1

SG3
CHANNEL 1

SG3
CHANNEL 2

SG2
CHANNEL 1

SG2
CHANNEL 2

SG1
CHANNEL 1

SG1
CHANNEL 2

Edge protection
sendor CHANNEL

1

Edge protection
sensor CHANNEL

2

Feedback
M3 Feedback M2 Feedback M1 Acknowledgement

button

Contactors M2 Contactors M3 Contactors M1

-4B1 -4B2

SG4
CHANNEL 1

SG4
CHANNEL 2

Table 20:
I/O list (document A2.4) of the robot cell with additional guard door

D1
Validated

(OK/not OK)

C1
Correct connections

verified in the software
(OK/not OK)

Inputs Variable Address

Inputs

Emergency stop, two-channel (NC) (1S1) IS_EMST %I8.4

Contact 1 robot guard door SG1 (NC) (1B1) IS_SG1_1 %I8.2

Contact 2 robot guard door SG1 (NO) (1B2) IS_SG1_2 %I9.6

Contact 1 fast-moving gate SG2 (NC) (2B1) IS_SG2_1 %I8.1

Contact 2 fast-moving gate SG2 (NO) (2B2) IS_SG2_2 %I9.5

Contact 1 vertical guard SG3 (NC) (3B1) IS_SG3_1 %I8.0

Contact 2 vertical guard SG3 (NO) (3B2) IS_SG3_2 %I9.4

Contact 1 guard door SG4 (NC) (4B1) IS_SG4_1 %I8�3
Contact 2 guard door SG4 (NO) (4B2) IS_SG4_2 %I9�7
Edge protection sensor of SG2, two-channel (NC) (2S1) IS_SL_SG2 %I8.5

Feedback contactors M1 (NC) (1K1, 1K2) IS_SM1 %I8.6

Feedback contactors M2 (NC) (2K1, 2K2) IS_SM2 %I10.2

Feedback contactors M3 (NC) (3K1, 3K2) IS_SM3 %I8.7

Acknowledgement button (NO) (3S1) I_ACK %I4.0

Outputs

Contactor motor M1 (1K1, 1K2) QS_M1 %Q24.0

Contactor motor M2 (2K1, 2K2) QS_M2 %Q24.1

Contactor motor M3 (3K1, 3K2) QS_M3 %Q24.2

 Date:

 Name:

 Software signature:

62

6 Development of safety-related application software

The additional guard door module is also listed in the modular
architecture (document B3). This expanded modular architecture
is shown in Figure 39. The C&E matrix (document B4) also
changes: as shown in Figure 40, it has two additional rows for
the new safety functions.

In the compact form of the matrix representation (Figure 41), the
changes are shown in only two cells.

In the Program sketch in Figure 42 (document B5), the change is
shown clearly by the colour highlighting.

The code review document (C1) remains unchanged. However,
the code review must be repeated for the changes. The parts

of the program that have changed must also be reviewed. The
I/O list (document A2.4) for the new signals and the new rows of
the C&E matrix (document B4) or modified rows of the compact
matrix presentation must also be verified and validated.

This procedure is intended to make changes as transparently
comprehensible as possible, thereby preventing errors from
arising when software components are modified. If a structured
procedure for software development is observed, such as the IFA
matrix method described above, the effort entailed by a change
can be reduced to that described. If not, the entire program may
have to be checked again following a modification.

Figure 39:
Modular architecture (document B3) of the robot cell with additional guard door

Emergency stop
EMST_OK

IS_EMST

Guard door SG1 Contactors M1
SG1_OK

IS_SG1_1 QS_M1
IS_SG1_2

Fast-moving gate SG2 Contactors M2
SG2_OK

IS_SG2_1 QS_M2
IS_SG2_2

Vertical guard SG3 Contactors M3
SG3_OK

IS_SG3_1 QS_M3
IS_SG3_2

Guard door SG4
SG4_OK

IS_SG4_1
IS_SG4_2

SL_SG2_OK

Certified library modules
Processing stage developed in-house

Verification performed (OK / not OK):
V1 Date:

Name:

A
ct

ua
tio

n
(s

pe
ci

fie
d

by
 th

e
m

at
rix

)

SF_Emergency
Stop

SF_EDMSF_Guard
Monitoring

SF_Guard
Monitoring

SF_Guard
Monitoring

SF_Guard
Monitoring

SF_EDM

SF_EDM

63

6 Development of safety-related application software

Figure 40:
C&E matrix (document B4) of the robot cell with additional guard door

M
od

e
of

 o
pe

ra
tio

n

Pr
ec

ed
in

g
st

at
e

in

th
e

te
st

St
at

e

IS
_I

M
ST

 (I
8.

4)

IS
_S

G
1_

1
(I8

.2
)

IS
_S

G
1_

2
(I9

.6
)

IS
_S

G
2_

1
(I8

.1
)

IS
_S

G
2_

2
(I9

.5
)

IS
_S

G
3_

1
(I8

.0
)

IS
_S

G
3_

2
(I9

.4
)

IS
_S

G
4_

1
(I8

.2
)

IS
_S

G
4_

2
(I9

.7
)

IS
_S

L_
SG

2
(I8

.5
)

Description Q
S_

M
1

(Q
24

.0
)

Q
S_

M
2

(Q
24

.1
)

Q
S_

M
3

(Q
24

.2
)

A
ck

no
w

le
dg

e-

m
en

t

I_
AC

K
(I4

.0
)

Reviewed
(OK/not

OK): Name Date

C1: Software consistent with
the matrix documentation

1 1 1 1 1 1 1 1 1 1 1 ALL_OK ON ON ON
EMST_OK EMST_OK EMST_OK

1 2 0 1 1 1 1 1 1 1 1 1
SF1: Emergency stop
actuated OFF OFF OFF

SG1_OK
1 3 1 0 0 1 1 1 1 1 1 1 SF2: SG1 open OFF NOP NOP

SG2_OK
1 4 1 1 1 0 0 1 1 1 1 1 SF3: SG2 open NOP OFF NOP

SG2_OK v
SG3_OK

1 5 1 1 1 0 0 0 0 1 1 1 SF4: SG2 and SG3 open OFF NOP NOP
IS_SL_SG2

1 6 1 1 1 0 0 1 1 1 1 0
SF5: Edge protection sensor
actuated NOP NOP OFF

SG4_OK
1 7 1 1 1 1 1 1 1 0 0 1 SF6: SG4 open NOP OFF NOP

SG4_OK v
SG3_OK

1 8 1 1 1 1 1 0 0 0 0 1 SF7: SG4 and SG3 open OFF NOP NOP

Date:
Name:

Cause Effect
Switching states of the inputs Outputs

ON

D1

ON

ON

ON

ON

ON

V1
Verification performed (OK / not OK): Software signature:

ON

Figure 41:
Compact matrix presentation of the robot cell with additional guard door

SFs involved
Output Description Mode of operation, all OK/not OK Name Date OK/not OK Name Date

QS_M2 Motor M2
EMST_OK& SG1_OK &
SG2_OK & SG4_OK 1, 3, 6

QS_M3 Motor M3
EMST_OK &
SL_SG2_OK 1, 5

Date:
Name:

Software signature:

QS_M1 Motor M1

EMST_OK& SG1_OK &
(SG2_OK v SG3_OK) &
(SG4_OK v SG3_OK) 1, 2, 4, 7

V1
Verification performed (OK / not OK):

Actuators Switch offs C1 D1
Software consistent with the

matrix documentation Function validated

6 Development of safety-related application software

64

Figure 42:
Program sketch (document B5) of the robot cell with additional guard door

Emergency stop EMST_OK
 EMST_OK SF_EDM QS_M1

IS_EMST SG1_OK &

SG2_OK
Guard door SG1 ≥1

SG1_OK SG3_OK
IS_SG1_1
IS_SG1_2 SG3_OK

≥1
Fast-moving gate SG2 SG4_OK

SG2_OK
IS_SG2_1
IS_SG2_2 EMST_OK SF_EDM QS_M2

SG2_OK &
Vertical guard SG3 SG4_OK

SG3_OK
IS_SG3_1
IS_SG3_2 EMST_OK SF_EDM QS_M3

&
Guard door SG4 IS_SL_SG2

SG4_OK
IS_SG4_1
IS_SG4_2

SF_Guard
Monitoring

SF_Emergency
Stop

SF_Guard
Monitoring

SF_Guard
Monitoring

SF_Guard
Monitoring

6�16 Simplification of recurring
safety functions

Safety functions such as emergency stop are frequently found
on machines. The larger a machine, the more emergency stop
switching devices are fitted to it. These switching devices can
be handled by a safety function in the software. However, it is
important for each individual emergency stop switching device
to be tested. The emergency stop switching devices are all
summarized in a separate table, serving as an overview for the
tests.

Two basic circuit solutions are possible. One is for all emergency
stop switching devices to be connected in series on the
hardware side and to be assigned to a single binary input
per channel in the PLC. The other is for the emergency stop
switching devices to be wired to separate inputs on the PLC and
the series connection to be effected on the software side by
means of an AND element in the PLC.

The discrepancy between the two channels can be monitored
both directly on the PLC input card and by means of a library
module (e.g. SF_Equivalent according to PLCopen [8]) in
the program. It is not necessary for each channel to be
tested explicitly to ensure monitoring of the two emergency
stop channels for a discrepancy; it is sufficient for the
parameterization of the input cards to be checked for
correctness, and the correct wiring to be checked by means of
the I/O-check.

Figure 43 shows the emergency stop functional test, taken from
the example of the rotary table (Section 7.4). In this example,
18 emergency stop buttons are installed on the system and are
connected in series for demand of the emergency-stop safety
function.

The item codes of all emergency stop buttons are stated,
together with validation columns in which the functional
test of each emergency stop button is confirmed. When each
emergency stop switching device is actuated, a check must be
performed of whether the levels on the two inputs of the PLC
change. An I/O-check is thus also performed for each emergency
stop button to verify that the wiring is correct.

If the emergency-stop switching devices are connected to inputs
individually rather than being connected in series, a column
showing the inputs can be added to the table in Figure 44.

Whether the emergency stop signal is grouped in the hardware
(by connection of the emergency stop switching devices in
series) or in the software (by connection of the inputs in series
in the PLC) has no bearing upon the function.

On large installations, the use of separate inputs is convenient
for troubleshooting, as faults can then be located more quickly.

These tables ensure that all emergency stop switching devices
have been tested. The matrix is used to test the safety function;
this results in only one emergency stop switching device
needing to be actuated for the test.

65

6 Development of safety-related application software

Figure 43:
Example emergency stop functional test

OK/not
OK Name Date

-1S1
-1S2
-1S3
-1S4
-1S5
-1S6
-1S7
-1S8
-1S9
-1S10
-1S11
-1S12
-1S13
-1S14
-1S15
-1S16
-1S17
-1S18

Emergency stop
button

I0.0

D1
Function tested

Figure 44:
Example emergency stop functional test with input data

IL Inputs OK/not OK Name Date
-1S1 I0.0/I1.4
-1S2 I0.1/I1.5
-1S3 I0.2/I1.6
-1S4 I0.3/I1.7
-1S5 I0.4/I2.0
-1S6 I0.5/I2.1
-1S7 I0.6/I2.2
-1S8 I0.7/I2.3
-1S9 I1.0/I2.4
-1S10 I1.1/I2.5
-1S11 I1.2/I2.6
-1S12 I1.3/I2.7
-1S13 I10.0/I11.4
-1S14 I10.1/I11.5
-1S15 I10.2/I11.6
-1S16 I10.3/I11.7
-1S17 I10.4/I12.0
-1S18 I10.5/I12.1

Emergency stop button
D1

Function tested

66

6 Development of safety-related application software

6�17 Observance of measures for fault
control

A distinction can be drawn between two types of failures in
machine control systems: those caused by systematic faults
and those by random faults. Systematic faults (errors) should
be avoided by a structured and transparent working method.
For the control of random faults (caused by component defects,
ageing or wear), library modules contain measures for detecting
such faults and then de-activating the control signal (output
signal) and placing the machine in a safe state.

In the selected modular architecture comprised of inputs stage,
processing stage (ACT module) and outputs stage (see Figure
45 with the example from Section 6.2), library modules are used
in the inputs and outputs stages. No fault control measures are
implemented in the ACT module.

Selected examples of these fault control measures employing
function blocks from the PLCopen library [8] are shown below.
Specifically, these function blocks are SF_EDM for contactor
monitoring, SF_GuardMonitoring for guard door monitoring and
SF_EmergencyStop for emergency stop monitoring.

Safety modules in the libraries of other PLC manufacturers work
similarly and also feature integral fault detection.

Figure 46 shows the SF_EDM module and its integration into the
software. The SF_EDM module monitors the state of the actuated
contactor through the readback inputs S_EDM1 and S_EDM2. If
the contactor is operating correctly, the states of these inputs

are always the inverse of that of the S_EDM_Out output. If this
is not the case, a readback error is detected and saved after the
MonitoringTime time parameter has expired. If the readback
error is active, output S_EDM_Out can no longer be switched to
TRUE, i.e. the contactor for example cannot be energized.

Figure 47 shows the call to the SF_GuardMonitoring module. SF_
GuardMonitoring monitors a guard door . As soon as one of the
two guard door contacts (inputs S_GuardSwitch1,2) assumes
the FALSE state, the output S_GuardMonitoring is also set to
FALSE. S_StartReset controls the acknowledgement behaviour.
Automatic acknowledgement may be activated only if it is not
possible for the system to cause an automatic start-up of the
machine.

In the final example, Figure 48 shows the call to the SF_
EmergencyStop function block, which monitors the emergency
stop. The SF_EmergencyStop module enables emergency
stops with stop category 0 to be implemented. The output
S_EStopOut is set to FALSE as soon as a FALSE signal is present
on the S_EstopIn input. The outputs are not reactivated until an
acknowledgement. Automatic acknowledgement may be set
with S_AutoReset only if automatic start-up of the machine is
prevented by some other means.

Fault control measures of this kind are found in many safety
library modules of control system manufacturers. The use
of library modules is also specified for this reason in the
programming rules. As a rule, automatic re-starting is also
prohibited, in order to prevent a machine from performing
unanticipated and possibly hazardous actions.

Figure 45:
Example modular architecture

Inputs stage Outputs stage

Emergency stop ACT module
EMST_OK Contactors M1

IS_EMST
QS_M1

Guard door SG1
SG1_OK Contactors M2

IS_SG1_1
IS_SG1_2 QS_M2

Fast-moving gate SG2
SG2_OK Contactors M3

IS_SG2_1
IS_SG2_2 QS_M3

Vertical guard SG3
SG3_OK

IS_SG3_1
IS_SG3_2

IS_SL_SG2

Certified library modules
Processing stage developed in-house

SF_Guard
Monitoring

SF_Emergency
Stop

Actuation
(specified by
the matrix)

SF_EDM

SF_Guard
Monitoring

SF_EDM

SF_Guard
Monitoring

SF_EDM

66

67

6 Development of safety-related application software

Figure 46:
Calling of the library module SF_EDM

Activate

SF_EDM

S_OutControl

S_EDM1

S_EDM2

MonitoringTime

S_StartReset

Reset

Ready

S_EDM_Out

Error

DiagCode

Figure 47:
Calling of the library module SF_GuardMonitoring

Activate

SF_GuardMonitoring

S_GuardSwitch1

S_GuardSwitch2

DiscrepancyTime

S_StartReset

S_AutoReset

Reset

Ready

S_GuardMonitoring

Error

DiagCode

Figure 48:
Calling of library module SF_EmergencyStop

Activate

SF_EmergencyStop

S_EStopIn

S_StartReset

S_AutoReset

Reset

Ready

S_EStopOut

Error

DiagCode

68

69

7 Overview of the software examples covered

This report began by discussing the design of safety-related
application software (SRASW) in general terms. It describes the
IFA matrix method step by step with reference to an example.
Some of these steps, however, require practice. Furthermore,
owing to the diversity of possible safety functions and their
implementation, the steps do not lend themselves to being
described in generic terms. This chapter therefore presents
the documentation of a large number of software examples
that implement typical safety functions. All examples are
documented according to the matrix method and are available
for download.

The circuit diagrams are block diagrams and are limited
to presentation of the safety function(s) and the relevant
components required for their implementation. In the interests
of clarity, certain additional circuitry that is normally required
has been omitted, for example that for the assurance of electric
shock protection, for control of overvoltage/undervoltage and
overpressure or low pressure, for the detection of insulation
faults, short-circuits and earth faults, for example on lines
routed externally, or for assurance of the required resistance to
electromagnetic interference. Such details include protective
circuitry in the electrical system, such as fuses and diodes,
for example in the form of freewheeling diodes or decoupling
diodes. In accordance with the fault lists in DIN EN ISO 13849-2,
issues such as the influence of conductor short circuits must
of course also be considered in relation to the safety function
concerned and the conditions of use. All components used must
therefore be selected with consideration for their suitability
according to their specification. Overdimensioning is one of the
well-tried safety principles.

The example controls with circuit diagrams and explanatory
texts are therefore limited to essential aspects and should not
be regarded as suggestions for implementation. All documents
for the example circuits were created in the SOFTEMA tool (see
Chapter 14) in the prototype version available at the time this
report was created. They therefore differ from the example
documents in the research report of DGUV project FF-FP0319
(see Section 2.2).

The following sections briefly describe the main functions
of the examples. Further information can be found in the
corresponding Microsoft Excel documents. The control programs
themselves were created in DGUV project FF-FP0319 by the
project’s authors. Siemens SIMATIC STEP7 V5.5 and Distributed
Safety V5.4 were used for this purpose. An exception was
the last example, which was created with Pilz PNOZmulti
Configurator 9.0.1.

The password for the program listings of the Siemens examples
is: pw_fcpu. The level 1 password for the example with
PNOZmulti is: 1.

The Excel documents can be found in a single archive file in
the download area of this IFA report. They can be opened and
viewed in SOFTEMA (Chapter 14). The program data is available
only on the website of project FF-FP0319 [5].

Table 21 shows the software examples discussed and the
associated Excel files and program listings.

The Excel files are divided into a number of worksheets. An
overview of these can be found in Table 22.

Table 21:
Overview of the software examples covered

Section Software example Excel document (�xlsx)
(on report page)

Program listing (�zip)
(on project page)

7.1 Robot production cell Robot production cell Robot production cell

7.2 Robot production cell with setup mode Robot cell setup mode Robotcell_setup

7.3 Robot production cell with additional guard door Robot cell with modification Robotcell_modification

7.4 Rotary table system Rotary table system Rotary table system

7.5 Machine tool Machine tool Machine tool

7.6 Safely limited speed (SLS) with standard FI SLS with standard FI SLS_StandardFI

7.7 Safely limited speed (SLS) with safety FI SLS with safety FI SLS_SafeFI

7.8 Muting Muting Muting

7.9 Two-hand control Two-hand control Two-hand control

7.10 PNOZmulti PNOZmulti PNOZmulti

70

7 Overview of the software examples covered

Table 22:
Overview of the worksheets in the Excel documents

Worksheets used

V-model

A1 Safety functions

System sketch

A2.2 Circuit diagram

A2.3 System structure

A2.4: I/O list

A3 Measures

A4 Requirements

B1 Safety program architecture

B2 Standard program architecture

B3 Modular architecture

B4 Matrix C&E

B4 Matrix compact

B5 Program sketch

C1 Codereview

D1 Validation

Changes

Persons

Project

Documents

Protocol

The first worksheet, “V-model”, shows an overview of the two
V-models for software and module development, together with
the associated documents. The subsequent worksheets bear the
names of the V-model documents. Section 5.5 also describes
the respective content. The “Changes” worksheet is used to
track modifications made to the application program. The
procedure for this is described in Section 6.15. The “Persons”
worksheet can be used to document the personnel involved in
development, validation and testing. The “Project” worksheet
contains all project-related information for the application
program. Project-related documents and files can be managed
in the “Documents” worksheet. Changes relevant to safety (e.g.
changes to the PLr of the safety functions) are documented on
the “Protocol” worksheet.

7�1 Robot production cell

In the example of a robot production cell, a simple production
cell as shown in Figure 49 is discussed. Automatic mode is
the only operating mode. The example is also described in
Section 6.2.

In the installation, the mould, which is mounted on the
mould carrier M2, is filled with foam by a robot M1. The robot
then returns to its staging area. The vertical guard SG3 is an
automatic guard that should open only when the robot fills the
mould. Once the foam has cured, a machine operator opens the
SG2 fast-moving gate and retrieves the finished workpiece from
the mould. The machine operator then closes the fast-moving
gate again. An edge protection sensor SL_SG2 (not shown) is
fitted to the fast-moving gate SG2 to protect operating personnel
against crush injuries. When the edge protection sensor is
tripped, the motor M3 of the fast-moving gate is switched off
immediately. The mould carrier must be stationary while the
fast-moving gate is open. Should the vertical guard not be
closed when the fast-moving gate is opened, the robot must
also be halted, for safety reasons. The guard door SG1 provides
access to the robot for the performance of maintenance work.
The robot must be at a standstill while the guard door is open.
If the emergency stop EMST is actuated, the robot, the mould
carrier and the high-speed guard are all brought to a standstill.

Figure 49:
System sketch of the robot production cell

Vertical guard SG3

Fa
st

-m
ov

in
g

ga
te

 S
G

2

M2

 Emergency stop

 Mould carrier

M3

G
ua

rd
 d

oo
r S

G
1

Robot

M1

71

7 Overview of the software examples covered

7�2 Robot production cell with setup
mode

Figure 50 shows the System sketch for the example of a robot
production cell with setup mode. This represents an extension of
Example 7.1. This example features automatic and setup modes.
The example is also described in Section 6.11.

The automatic mode function is that described in Section 7.1.
When the fast-moving gate SG2 is open and the vertical guard
SG3 is closed, the mould carrier M2 can be moved in setup
mode at a safely limited speed (SLS) by actuation of one of the
enabling buttons 3S1, 3S2.

Figure 50:
System sketch of the robot production cell with setup mode

 Vertical guard SG3

Fa
st

-m
ov

in
g

ga
te

 S
G

2

M2

Emergency stop

Acknowledgement

 Mould carrier

M3

G
ua

rd
 d

oo
r S

G
1

IS_TIP_1 IS_TIP_2

 Enabling button Setup mode

Robot

M1

7�3 Robot production cell with
additional guard door

The System sketch of the robot production cell with additional
guard door, shown in Figure 51, is an extension of Example
7.1 with the addition of the guard door SG4. Automatic mode
is the only operating mode. The example is also covered in
Section 6.15.

The function is the same as that implemented as in Example 7.1.
In addition, the mould carrier M2 is halted when the guard door
SG4 is opened. The robot M1 must be halted if the vertical guard
SG3 is open at the same time as the guard door SG4.

Figure 51:
System sketch of the robot production cell with additional guard door

 Vertical guard SG3

Fa
st

-m
ov

in
g

ga
te

 S
G

2
M2

Emergency stop

Robot

Acknowledgement

M1

Mould carrier

M3

G
ua

rd
 d

oo
r S

G
1

Guard door SG4

72

7 Overview of the software examples covered

7�4 Rotary table system

Figure 52 shows the System sketch of the example featuring the
rotary table system. Automatic and setup operating modes are
implemented in this example.

This system produces workpieces in cyclic operation. The
loading robot M2 loads a mould onto a workpiece carrier. The
rotary table then rotates one cycle step further and the next
workpiece carrier is filled. Each workpiece thus cures over two
cycle positions. In the fourth position, a machine operator
retrieves the workpiece. A robot M3 then cleans the workpiece
carrier. The retrieval zone is monitored by a light barrier LB. In
addition, a laser scanner LC detects the presence of persons in
the retrieval zone. The workpiece carriers must all be fitted with
workpiece moulds or protective mesh for bypassing the safety
contacts. Should a mould or the relevant protective mesh be
missing, all four workpiece carrier motors MWT1 to MWT4 and
the rotary table motor M1 are switched off, and the loading robot

and cleaning robot are halted. Should one of the guard doors
SG1, SG2, SG4, SG5 be opened or the emergency stop EMST
actuated, all workpiece carrier motors are switched off and
the rotary table, the loading robot and the cleaning robot are
halted. Likewise, all motors are switched off if the light barrier
is interrupted and a workpiece carrier is not present in the
retrieval zone. When the guard door SG3 is opened, the loading
robot is brought to a halt. The loading robot is also brought
to a halt when axis 1 of the loading robot impacts a limiting
device. If axis 1 of the cleaning robot impacts a limiting device,
it is brought to a halt. If the light barrier is interrupted whilst a
workpiece carrier is present in the retrieval zone, the motor of
the workpiece carrier concerned is switched off. If axes 1 and 2 of
the cleaning robot are not in their initial position when the light
barrier is interrupted or the laser scanner is tripped, the cleaning
robot is brought to a halt. If the laser scanner is tripped whilst
the cleaning robot is in its initial position, the rotary table can be
moved at a safely limited speed (SLS) by means of the enabling
button.

Figure 52:
System sketch of the rotary table

M1

M3

M2

Guard door SG1

 Guard door SG2

 Guard door SG3

Guard door SG4

Guard door SG5

 Light barrier

Enabling button

Laser scanner

 Direction of rotation

MWT1

MWT2

MWT3

MWT4

 Loading robot

Cleaning robot

Acknowledgement button

 Emergency stop

Retrieval zone

73

7 Overview of the software examples covered

7�5 Machine tool

The “Machine tool” example (Figure 53) describes a multi-
axis milling machine. This machine possesses automatic and
setup operating modes. The example is based on an example
from [19].

The machine has a moving workpiece table. The table can
be moved in the x-axis with the motor X1 and rotated by the
motor C. The milling tool can be moved to all spatial coordinates
by the axis motors X2, Y and Z. The tool is rotated by the spindle
motor S. The automatic tool changer is moved by the rotary axis
W and the pneumatic axis X3. The axes X1, C, X2, Y, Z, S and W
are moved by drives with integral safety functions.

In automatic mode, the guard doors must be closed and locked.
All guard doors are equipped with electromechanical guard
locking. If the emergency stop EMST is activated, all drives are
halted with SS1 and the pneumatic axis X3 is disconnected
from its power supply. SS1 stands for safe stop 1, i.e. the drive
is ramped down and then disconnected from the power supply
with STO (safe torque off).

For guard doors SG1 or SG2 to be opened, all drives are shut
down with SS2 and the power supply to X3 is disconnected. SS2
stands for safe stop 2, i.e. the drive is ramped down and a safe

stationary state then monitored with SOS (safe operating stop).
This response also occurs when the mode is switched to setup
mode.

For the guard door SG3 to be opened, the drives of the tool (X2,
Y, Z, S) and the tool changer W are run down by SS2 and the axis
X3 is halted. The axes of the workpiece table remain active, as
they cannot be reached from the guard door SG3.

In setup mode, opening of the guard doors can be demanded by
means of pushbuttons. To ensure that the pneumatic axis X3 is
stationary, guard locking of the relevant guard door is released
only after a five-second delay. In addition, the remaining axes
must signal safe standstill by SOS. Standstill of axes X1 and C is
not queried for the guard door SG3.

If the guard door SG1 is open and the other guard doors
are closed, the axes of the workpiece table (X1, C) and the
movement axes of the tool (X2, Y, Z) can be moved in setup
mode at safely limited speed (SLS) with the “tap forwards“ or
“tap backwards” buttons. The axes to be moved are selected by
means of buttons. With guard door SG2 open and guard doors
SG1 and SG3 closed, the rotary axis of the tool changer W can
be moved in setup mode at safely limited speed (SLS) with the
“magazine forwards“ or “magazine backwards“ buttons. These
movements are required for fitting the tool to the tool changer.

73

Figure 53:
System sketch of a machine tool

CX1

X2

 Guard door SG1

Guard door SG2

Guard door SG3

W

S Z

Y

X3

Acknowledgement button
Emergency stop

 Tool changer

Workpiece table

Tool axes

7 Overview of the software examples covered

7�6 Safely limited speed (SLS) with
standard FI

The example of “SLS with standard FI” shows the structure of
a drive control system with safety PLC (Figure 54). Since the
frequency inverter has no integral safety functions, the speed
must be read in by two rotary encoders G1 and G2 and the
speeds compared. This two-channel arrangement enables the
safety function to be implemented.

This example features automatic and setup operating modes.
In automatic mode, the motor can turn when the guard door is
closed. In setup mode, the motor may be run at safely limited
speed (SLS) with the guard door open by means of the push
button S1. If emergency stop is actuated, the motor is always
switched off.

This example is taken from BGIA Report 2/2008 [2] (Example 21).

74

Figure 54:
Hardware structure of the “SLS with standard FI”
example

 Emergency stop

S2

Tap open

closed n1 n2

nref

Safety PLC

Q1

B1

B2

Selector switch
S3

Q1

Pulse blocking

L

S1

Q1

M
G1
G2

n1
n2

Start/stop

+US

7 Overview of the software examples covered

7�7 Safely limited speed (SLS) with
safety FI

Figure 55 shows the hardware structure of the “SLS with safety
FI” example. This example compares the overhead of using drive
controls with integral safety functions and those without, as in
the example in Section 7.6. In this example, the safety functions
of the drive control are actuated by the safety PLC.

The safety functions are the same as in the example in
Section 7.6: emergency stop, guard door monitoring and SLS in
setup mode.

When emergency stop is actuated, the motor is stopped with
the safety function SS1. If the guard door is opened, the motor
is stopped with SS2 and its stationary state monitored automa-
tically with SOS. From this stationary state, the safely limited
speed (SLS) can be activated by means of the push button.

75

Figure 55:
Hardware structure of the
“Safely limited speed with safety FI” example

xx

xx

S2

Tap

open

closed

nref

Safety PLC

B1

B2

Selector switch
S3

STO_aktiv

L

S1

M

n1

SLS_aktiv

Int_Ev

SS1_aktiv
SS2_aktiv
SOS_aktiv

Start/stop

+US

76

7 Overview of the software examples covered

7�8 Muting

The “Muting” example describes a robot production cell into
which the material is fed through a light curtain (Figure 56).
Automatic mode is the installation’s only operating mode.

The workpieces are transported to the robot’s production area
by a conveyor belt. In the process, they pass through a light
curtain. The workpiece triggers the muting sensors in the correct
sequence and can therefore pass through the light curtain wit-
hout stopping the system. Following processing, the workpiece
moves back out of the working area.

If the light curtain is interrupted without the muting sensors
being triggered correctly, enabling of the conveyor belt and the
robot is switched off. Actuation of the emergency stop button
has the same effect.

Figure 56:
System sketch of a production cell with material transport through a
light curtain

Light curtain

M

Emergency stop

Robot

Acknowledgement

Conveyor belt

Muting sensors

7�9 Two-hand control

The “Two-hand control” example describes a press (Figure 57).
Setup is this machine’s only operating mode.

The machine operator places a workpiece in the press zone and
must then press both push buttons of the two-hand control at
the same time to enable the motor M1. The motor is stopped
immediately when the emergency stop button is actuated.

Figure 57:
System sketch of a press

M1

M1

M1

M1 TR

Emergency stop

 TL

Acknowledgement

M1

77

7 Overview of the software examples covered

7�10 Configurable switching device

In this example, a configurable switching device monitors
a robot production cell (Figure 58). The arrangement has
automatic and setup operating modes.

In automatic mode, the robot moves when the guard door SG is
closed. In setup mode, the robot can be moved at safely limited
speed (SLS) with the guard door open with enabling by means of
an push button.

This example is intended to illustrate that the IFA matrix method
for software specification and documentation of SRASW is also
suitable with the use of configurable switching devices.

Figure 58:
System sketch of a robot production cell, monitored by means of a
configurable switching device

xx
xx

Emergency stop

Robot Acknowledgement

M1 G
ua

rd
 d

oo
r S

G

Push button

Start button

Stop button

7878

79

8 Role of embedded software for application
programming

Development and execution of SRASW is possible only with
software embedded in a programmable electronic control
system (embedded software, SRESW: firmware, runtime
system, etc.). Embedded software therefore makes a
significant contribution to the reliability of the safety functions.
DIN EN ISO 13849-1 does not differentiate in its requirements
between programmable standard and safety components.
The requirements for the realization of SRESW and SRASW
(Section 4.6 of the standard) must therefore be met for standard
electronic programmable components (such as a standard PLC),
as well as for safety components.

When a certified safety-related control system is used, only
Section 8.1 in this chapter must be observed.

8�1 Role of the SRESW of a safety-
related control system

The SRESW of a safety component within the meaning of
the Machinery Directive is linked inseparably to the control
electronics and is therefore usually developed, tested and
certified together with the latter, usually in accordance
with DIN EN 61508 and DIN EN ISO 13849-1. The reliability
of this SRESW is certified by the manufacturer by an SIL or
the performance level. Safety functions with PLr e may be
implemented by programmable controllers with PL e. The same
applies by analogy to lower PLs.

8�2 Evaluation of the SRESW of a
standard controller

Safety-related controls for industrial applications are often
implemented by means of standard components. Restrictions
apply in this case, however, from which tested and certified
safety components are exempt. The SRESW of a standard
component must also be evaluated in all cases. Either
the SRESW has been developed itself in accordance with
DIN EN ISO 13849-1, Section 4.6.2, or the manufacturer of the
standard component is able to certify this. Neither is common; it
is therefore not usually possible to prove that the requirements
for SRESW are met for a programmable standard component.
How is this addressed in application programming?

Whereas the 2008 version of DIN EN ISO 13849-1 did not set
out any specific requirements in this respect, Amendment 1 of
DIN EN ISO 13849-1 [1], Section 4.6.2 contains the following new
requirement:

For components for which SRESW requirements are not fulfilled,
e.g. PLCs without safety rating by the manufacturer, these
components may be used under the following alternative
conditions:

- the SRP/CS is limited to PL a or b and uses category B, 2 or 3;

- the SRP/CS is limited to PL c or PL d and may use multiple
components for two channels in category 2 or 3. The components
of these two channels use diverse technologies.“

Caution: the descriptions in BGIA Report 2/2008 [2], Section
6�3�10 thus become obsolete�

These new requirements apply to embedded software only.
However, when components without a safety assessment
are used by the component manufacturer, numerous other
requirements in accordance with DIN EN ISO 13849-1 must be
met in addition to those for embedded software, e.g:

• With regard to the avoidance and control of systematic faults
or suitability for the foreseeable environmental conditions,
e.g. climate, vibration, electromagnetic compatibility.

• Each component used in an SRP/CS must satisfy at least
the requirements of category B (since all categories contain
the basic requirements of category B). Category B requires
compliance with the applicable standards, e.g. EN 61131-2 for
PLCs, EN 61800-2 for frequency inverters, EN 60947-5-2 for
proximity switches.

• Systematic failures must be taken into account for each SRP/
CS in accordance with Annex G.

The new SRESW requirements stated above apply not only to
programmable controllers without a manufacturer’s safety
assessment, but to all components used in an SRP/CS that
contain embedded software. These include, for example,
frequency inverters and intelligent sensors (e.g. encoders,
proximity switches).

Table 23 shows the possible combinations of PL and category
with standard components and whether, and if so how, the
requirements applicable to SRESW are to be met.

80

8 Role of embedded software for application programming

Table 23:
Requirements for the SRESW of standard components (to DIN EN ISO 13849-1:2015)

No PL Category Conditions Requirements for the SRESW of the standard components

1 a or b B, 2, 3 Compliance with relevant product standards
Quality-assured development as a basic safety
principle

No SRESW requirements apply to industrial standard
components

2 a, b, c 1 Electronic components cannot generally be
used for implementation, since they are not
considered well-tried components in the sense of
DIN EN ISO 13849-1, Section 6.2.4

Not applicable

3 c or d 2 or 3 As No 1
Two channels with diverse technology; the required
fault detection (diagnostic coverage, DC) is
implemented by SRASW

No SRESW requirements apply to industrial standard
components

4 c or d 2 or 3 Two channels without diverse technology; the
required fault detection (diagnostic coverage, DC)
is implemented by SRASW

Full SRESW requirements in accordance with
DIN EN ISO 13849-1, Section 4.6.2 apply, including to
industrial standard components. A safety analysis by the
component manufacturer is required

5 e 3 or 4 DIN EN ISO 13849-1, Section 4.6.2 states that PL e is
not possible for standard components

Not applicable

A note on “technological diversity”: this means that owing to
the diversity of two channels (the difference in the technologies
employed), the probability of a dangerous failure of the SRP/
CS being caused by an error in the SRESW is strongly reduced.
Systematic failures and common cause failures are relevant in
this context.

The requirement for “technological diversity” can normally be
regarded as satisfied in the following examples:

• One channel (functional channel or test channel) employs
components containing embedded software. The second
channel employs solely components without embedded
software, i.e. mechanical, electronic, electromechanical,
pneumatic or hydraulic components.

• The two channels employ diverse embedded software,
such as different operating systems running on identical or
different hardware.
 Note: when identical hardware is used, particular attention
must be paid to the systematic capability of the components
for the required performance level.

• The two channels employ different hardware (e.g.
microprocessors with different processor cores). It is assumed
in this case that the associated embedded software was
programmed in different development environments.

The requirement for “technological diversity” can normally be
regarded as not being satisfied in the following examples:

• The two channels employ components of the same kind from
different manufacturers, without more detailed information
on the diversity of the embedded software. In this scenario, it
cannot normally be ruled out that the two manufacturers use
the same embedded software components, and possibly even
identical hardware (brand labelling).

• The two channels employ different component types from the
same manufacturer, without more detailed information on the
embedded software.

81

9 Use of standard controllers for SRASW

A question often asked: Can safety-related control systems be
implemented with standard components such as a standard
PLC? The IFA published a position paper [20] in 2011 on this
subject. The paper stated that “safety-related control systems
can in principle be implemented with the use of standard
components. However, safety components offer the advantage
that their manufacturer relieves the machine designer of
the task of safety-related assessment and analysis of these
components when they are used. Besides the use of a suitable
architecture (category), implementation of a required fault
detection and consideration of failure rates/probabilities,
attainment of functional safety requires consideration to be
given to components’ systematic capability. In general, the
use of complex elements or subsystems of the same design
(homogeneous redundancy) should be ruled out, as questions
regarding systematic capability and the required diagnostic
coverage often can not be adequately answered.“

Standard components can therefore be used in principle, but
with increased overhead and greater responsibility on the part
of the party implementing the control system. Homogeneous
redundancy, for example by the use of two identical standard
PLCs, is unsuitable, owing to the almost complete impossibility
of assessing the probability of systematic hardware and SRESW
failures of these components (since they have not been tested
or certified). Details of the requirements concerning the SRESW
of standard components can be found in Section 8.2.

This chapter describes the conditions under which the SRASW
is to be developed when standard components are used.
A requirement in this case is that use of the programmed
standard components (i.e. their hardware and SRESW) is in fact
permissible.

9�1 Determining the necessary
measures for fault avoidance

As with safety components, the selection of measures for fault
avoidance for the SRASW used in a standard component is
based upon the required performance level of the implemented
safety function. However, as the critical impacts of a software
error are reduced in two-channel architectures by diversity
in programming and technology, and the probability of a
dangerous failure of the safety function is thereby also reduced,
the IFA recommends that the requirements/their effectiveness
can be reduced by one PLr in some of the cases described
below. This can be inferred from Section 7.4.3, Synthesis of
elements to achieve the required systematic capability, of
DIN EN 61508-2:2010.

9�2 Single-channel architectures

Single-channel architectures are the typical use case for a
standard component such as a standard PLC: a single-channel
architecture of category B for a maximum possible PLr of b. No
diagnostic coverage level need be attained for the component.
The SRASW must be implemented with use of the basic
measures for fault avoidance (Section 3.2). The IFA matrix
method can be used for this purpose (Section 9.4).

Category 1 is also single-channel, but requires well-tried
components in accordance with DIN EN ISO 13849-1,
Section 6.2.4. This excludes complex electronic components. PLr
c can therefore be attained only with two-channel architectures.

9�3 Two-channel architectures

If a programmable standard component is used for each channel
in two-channel architectures, the SRASW of the two components
can be either the same, or diverse. The distinction between
these two cases is described below. In this context, category 2
is also included among the two-channel architectures (one
functional channel, one test channel).

9�3�1 Characteristics of diverse SRASW

Diverse SRASW means that two (or more) programs based on the
same specification are intended to perform the same tasks but
have been developed differently. This is intended to reduce the
probability of a dangerous failure caused by the simultaneous
occurrence of a systematic fault in the SRASW. Characteristics of
diverse SRASW may for example be:

• Different programmers or programming teams

• Different designs (software structure, algorithms, etc.)
produced by the same people

• Different programming languages: text-based language (ST)
vs. graphical language (FBD)

• Different development environments: free programming of a
PLC vs. graphical configuration of a control relay

9�3�2 Two channels with identical, homogeneous SRASW

If a programmed standard component in one channel of the
part of the control system is used redundantly with another
programmed standard component in the other channel and
the two items of SRASW are not programmed differently (for
characteristics of diversity, refer to Section 9.3.1), the normative
requirements for the required PL (Section 3.2) apply in full to
both items of SRASW, owing to the probability of a simultaneous

82

9 Use of standard controllers for SRASW

dangerous failure caused by systematic faults. Independently
of this requirement, the normative requirements for the SRESW
must also be met (Section 8.2).

9�3�3 Two channels with diverse SRASW

If a programmed standard component in one channel of the
part of the control system is used redundantly with another
programmed standard component in the other channel in
category 3 or 4, and the two items of SRASW are programmed
differently (see Section 9.3.1), the normative requirements
for both items of SRASW can be lowered by one PL (e.g.
requirements for PLr c instead of PLr d, see Section 3.2), owing
to the lower probability of a simultaneous dangerous failure
caused by systematic faults in the two items of SRASW. In the
case of category 2, the requirements can be lowered only for the
SRASW of the test channel. Independently of this requirement,
the normative requirements for the SRESW must also be met
(Section 8.2).

9�3�4 Only one channel with SRASW

If a programmed standard component is employed in one
channel of the part of the control system in diverse redundancy
with a technology other than programmable electronics (e.g.
fluid power technology) in the other channel in category 3 or 4,
the normative requirements can be reduced by one PL (e.g. the
requirements for PLr c apply in place of PLr d, see Section 3.2),
owing to the lower probability of a dangerous failure caused by
systematic faults in this item of SRASW. In the case of category 2,
the requirements can be lowered only for the SRASW of the
test channel. Independently of this requirement, the normative
requirements for the SRESW must also be met (Section 8.2).

9�4 Application of the IFA matrix
method to standard components

The IFA matrix method described here can also be applied to
application programming of standard components, provided
the software structure corresponds to the three stages as shown
in Figure 10, i.e. inputs stage → processing stage → outputs
stage, and the measures for fault detection are implemented in
the inputs and outputs stages. This applies all the more when
two standard components are used in two channels with diverse
application programming. A good example of this is provided
by the validation example in DIN EN ISO 13849-2 [10], Annex
E. Example projects illustrating this are also available (see
Section 12.3).

9�5 Use of standard components for
measures for fault control

Standard components are also frequently used to implement
test equipment. What reliability is required in this case for
these standard components: single-channel or two-channel? A
general requirement for test equipment is that it should not fail
significantly earlier than the components that it monitors. At
the same time, it is inefficient for much greater investment to be
made in the reliability of the test equipment than in the parts of
the control system performing the safety function proper.

DIN EN ISO 13849-1 therefore imposes only limited requirements
upon the reliability of the test equipment. For categories 3 and 4,
reliance is upon single-fault tolerance, since several dangerous
failures in total – including failure of the test equipment – must
occur before the safety function ceases to be performed. It is
considered extremely unlikely that such a case would occur
unnoticed. Test facilities can therefore be implemented in
single-channel form – with use of standard components such as
a standard PLC – without any particular requirements concerning
their reliability. Examples can be found in BGIA Report 2/2008 [2]:
examples 22 (component K4), 28 (K3) and 33 (K1).

For category 2, a supplementary requirement exists – at
least for the simplified procedure for determining the PL
(DIN EN ISO 13849-1, Section 4.5.4) – that was imposed for
calculation of the PFHD: the rate of dangerous failure of the test
equipment (e.g. of the standard PLC) must not exceed twice the
rate of dangerous failure of the components that it monitors.
In cases of doubt, this comparison can be carried out channel
by channel. The MTTFD value of the entire test channel should
then not be lower than half the MTTFD value of the functional
channel. Here too, corresponding examples can be found in
BGIA Report 2/2008: examples 9 (component K3), 11 (K1) and
12 (K1). With regard to SRASW, the normative requirements must
be observed and the case studies in Section 9.3 considered: in
the case of diverse SRASW (or SRASW in the test channel only),
the requirements can be reduced by one PLr.

Categories B and 1 do not require testing.

83

10 Typical test and monitoring measures in SRASW

In certified safety control systems and the manufacturer’s
function modules supplied with them, self-testing and online
monitoring measures for fault control have already been
implemented appropriately by the control system manufacturer.
In contrast, this chapter provides information on standard
components and function blocks developed by users for
which fault-control measures cannot be implemented until the
application programming stage.

The test and monitoring measures for random and systematic
control system failures constitute an important part of the
SRASW. Effective tests permit, for example, poor reliability
of the components (including peripheral components) to
be compensated for to some degree, thereby enabling the
performance level of the safety function to be raised. The
quality of fault detection is stated in DIN EN ISO 13849-1 by the
diagnostic coverage (DC). Annex E of the standard contains a
comprehensive list of typical test measures and the DC values
that can be attained by them.

In contrast to the measures for fault avoidance (Chapter 5),
these test and monitoring measures are also referred to as fault-
control measures. Self-tests are often already implemented
in the SRESW (embedded software) to manage failures of the
programmable controller itself. Tests of the connected peripheral
devices such as sensors or actuators can also be programmed
in the SRASW. These tests are typically already implemented in
the manufacturer’s function blocks in the inputs and outputs
stages (Section 6.17). In addition, project/machine-specific
function blocks with tests and monitoring functionality must
also be programmed in-house in the application. This chapter is
intended to provide relevant information.

10�1 Typical techniques for testing and
monitoring

Typical techniques exist for testing the connected peripheral
devices on which certain behaviour is anticipated (e.g. due to
a signal change), against which a check is performed with a
different signal:

• Cross-comparison of two logic components: two logic
components of a part of a control system (e.g. two standard
PLCs) exchange their input signals and processing results and
compare them.

• Logic and time-based program runtime monitoring: an item
of test equipment checks whether all important program
modules of the monitored control are executed in the
expected time and sequence.

• Plausibility check of sensor components: a sensor signal
(binary or analog) is compared with a second sensor signal

from the same measuring point. An analog sensor signal is
compared with an anticipated signal range.

• Direct monitoring: an actuator component (contactor/valve)
is switched by an output signal from the logic stage. The
switching operation is registered directly on the actuator
component by a diagnostic component, such as an electrical
contact, and reported back to the logic. After the discrepancy
time has been allowed to elapse, the switching signal is
compared with the check-back signal to monitor whether
switching was performed correctly.

• Indirect monitoring: an actuator component (frequency
inverter/contactor/valve) is switched by an output signal
from the logic stage. The switching operation itself cannot
be measured on the actuator component. Only the effect
of switching is registered, by a diagnostic component on
downstream parts of a control system, interconnecting means
or actuators (e.g. pressure switches/rotary encoders/position
switches/displacement transducers), and is reported back to
the logic stage. After the discrepancy time has been allowed
to elapse, the switching signal is compared with the check-
back signal to monitor whether switching was successful.

Owing to time delays in the signals, a tolerance time (the
discrepancy time) must always be allowed to elapse before the
result of the comparison is valid. Analog signals require a value
tolerance to be allowed for technical reasons.

10�2 Boundary conditions for test and
monitoring measures

Detection of a dangerous failure is only the first part of a
successful test: a safe state must also be brought about that
presents no further danger. This includes an effective shut-off
path, which for example in the case of single-channel tested
systems (category 2) entails a requirement for a second shut-
off element. This is necessary in order for the safe state to
be brought about or maintained when the test has detected
failure of the normal shut-off element. In two-channel systems
(categories 3 and 4), the safe state is brought about by the
second shut-off path when one of the channels fails.

Initiation of a test, its performance and the necessary shut-
off process should ideally be performed automatically by the
SRASW. Only in exceptional cases would it appear advisable to
rely here upon manual intervention, for example by the machine
operating personnel. Calculation of the diagnostic coverage
for two-channel systems nonetheless takes account of fault
detection when a demand is made for the safety function, i.e.
consideration is not limited to tests triggered automatically in
the SRASW. Electromechanical components in particular, such
as relays or contactors, are generally capable of detecting the
fault only when a demand is made for the safety function. For

84

10 Typical test and monitoring measures in SRASW

the level of diagnostic coverage of fault detection in the event of
a demand being made for the safety function, the frequency with
which this occurs must be considered.

10�3 Test frequency

A further aspect is the question of the required test frequency.
A test which is not executed sufficiently frequently may under
certain circumstances be overtaken by the incidence of a
hazardous event, and therefore gives a false sense of safety.
As a rule of thumb, the test frequency is always in competition
with the frequency of other events; for this reason, a universal
adequate frequency cannot be stated. In two-channel category 3
and 4 systems, the test frequency is in competition with the
frequency of incidence of a second dangerous failure, since a
risk of the safety function not being executed exists only if the
second channel fails before a test has detected the failure of
the first channel. As per the definition, category 4 systems even
tolerate an accumulation of undetected faults. In two-channel
systems, a test frequency of once per shift has proved suitable
in practice.

The situation is different for category 2 systems with single
channel testing. In this case, the test must be passed before
a demand is next made for the safety function, i.e. before a
potential hazard occurs. In this case, the test frequency is
therefore in competition with the frequency of the demand for
the safety function. A factor of 100 is considered sufficient, i.e. a
test frequency that is at least 100 times the mean demand rate
for the safety function. Where a factor of 100 is not possible, the
test rate can be reduced to a factor of 25. This reduction results
in an increase in the probability of failure PFHD of approx. 10%
over that for a factor of 100 [21].

Should, in systems with single-channel testing, the tests be
executed so quickly that the safe state is attained before a
hazard arises, no requirements are imposed upon the frequency
of testing (DIN EN ISO 13849-1:2016, Section 4.5.4, requirements
for category 2).

10�4 Further information

Suggestions for testing measures can be found for example in
the literature [8; 22 to 24].

85

11 Combinations of multiple parts of a control system
with software

So far, this report has referred only to a programmable part
of a control system (SRP/CS) with an application program,
serving as part of a safety function. In some cases, several
parts of a control system (e.g. PLCs and programmable drive
controls), each with its own application program, may have to
be connected in series as subsystems each executing part of
a safety function. During evaluation of the control hardware,
i.e. the probability of a dangerous, random component failure,
the probabilities of failure (PFHD) of the individual parts of the
control system are added together. As a result, each additional
part of the control system results in a decrease in hardware
reliability.

What must then be considered with regard to SRASW and
systematic failures when several programmed parts of a control
system are combined for implementation of a safety function?
Does this influence the requirements or the development
process?

Section 6.3 of DIN EN ISO 13849-1 [1] addresses the combination
of multiple parts of a control system, with the aim of determining
an overall PL for the combination and thus for the attained
safety function. At the same time, a total PFHD is determined
by adding the individual PFHD values of the parts of the control
system together. However, this sub-Chapter contains no explicit
requirements or specifications for combination of application
programs of these parts of a control system. The standard also
states that: “The PL of the combined SRP/CS is limited by:
- the lowest PL of any individual SRP/CSi involved in performing
the safety function (because the PL is determined also by non-
quantifiable aspects) [such as software quality]“.

Consequently, the attainable PL for the combination/safety
function as a whole is determined by the “poorest” application
software, even when the total PFHD is very low. This is also
illustrated by Figure 3 in Section 3.2.

Conversely, this also means that specification of a PLr for a
safety function results in the same requirements to Section 4.6
of the standard applying to all application programs of the parts
of the control system. Checking is of course required of whether
connecting the parts of the control system and their application
programs in series could increase the probability of systematic
failures being caused by the programs owing to possible
adverse interactions between them.

8686

87

12 Validation of SRASW

Validation refers to quality assurance measures for the
avoidance of errors during the design and implementation of
safety-related parts of control systems (SRP/CSs) which perform
safety functions. DIN EN ISO 13849-2:2013 [10] deals with this

subject at particular length. Validation can be performed by
analysis alone or by a combination of analysis and testing.
Figure 59 provides an overview of the validation process.

Figure 59:
Overview of the validation process (to DIN EN ISO 13849-2:2013)

88

12 Validation of SRASW

Validation is proof of suitability for the real-case intended pur-
pose. It is performed during or at the end of the development
process. It involves checking that specified safety requirements
concerning the safety-related parts of the machine’s control sys-
tem are met. In relation to SRASW it involves, for example, che-
cking of whether the safety functions have been attained by the
SRASW a) as specified and b) in the quality required by the PLr.
For the categories 2, 3 and 4 (with fault detection), validation
of the safety function must also include tests performed under
fault conditions (expanded functional test, Section 5.10). Parts
of the SRASW that detect and control faults are thus also tested.

12�1 General requirements for
validation

In DIN EN ISO 13849-2:2013, general requirements are first
formulated for all aspects of validation, some of these in relation
to SRASW. These general requirements are described in brief
below. Validation should be performed by persons who are not
involved in designing the parts of a control system (see also
Section 5.15).

When the IFA matrix method is used in conjunction with the
SOFTEMA tool (Chapter 14), these general requirements are met.
Further information, for example concerning ambient conditions
or test equipment, can be linked to SOFTEMA in the form of
documents.

12�1�1 Validation by analysis and tests

Validation of an item of SRASW comprises analysis (see
DIN EN ISO 13849-2, Chapter 5) and performance of functional
tests (see DIN EN ISO 13849-2, Chapter 6) under foreseeable
conditions in accordance with the validation plan.

Chapter 5 of DIN EN ISO 13849-2 describes the general
procedure and analysis techniques. It states that validation
of the SRP/CS must be carried out by an analysis which must
include i. a. the non-quantifiable, qualitative aspects which
affect system behaviour (if applicable, software aspects).

During analysis it is to be determined by inspection of
documents, for example by review or walk-through and where
applicable by the use of analysis tools, such as tools for static
and dynamic software analysis or FMEA tools, whether the
specified requirements have been met.

The analysis should be begun as early as possible and
conducted simultaneously with the development process, to
enable problems to be corrected at an early stage. It may be
necessary for performance of some parts of the analysis to be
delayed until development has reached an advanced stage.
Specific analysis steps relating to software are presented in
Section 12.2 of the present report.

The general testing procedure and techniques employed are
then described in Chapter 6 of DIN EN ISO 13849-2. Concerning
the need for testing, it says that: When validation by analysis
is not conclusive, testing shall be carried out to complete the

validation. Testing is always complementary to analysis and is
often necessary.

With regard to the number of test items, it states that unless
otherwise specified, the tests shall be made on a single
production sample of the safety-related part being tested. A
single production sample is therefore sufficient for testing with
respect to SRASW.

This is followed by a summary of Chapter 6 describing the
requirements for the validation tests:

• Tests must be planned, executed in a logical sequence and
Protocoled.

• The test plan must include the test specifications, the
required outcome of the tests and the chronology of the tests.

• The test protocols produced must contain the names of the
persons carrying out the tests, the environmental conditions,
the test procedure and equipment used, the test date and the
results of the tests.

• The test protocols must be compared with the test plan to
ensure that the specified functional and performance targets
are attained.

• The test must be performed on a test sample as close as
possible to its final operating configuration, i.e. with all
peripheral devices and covers attached.

• Testing may be applied manually or automatically (e.g. by
computer).

• Where appropriate, the safety functions must be validated by
means of tests in which various combinations of input signals
are entered into the SRP/CSs. The resulting reaction at the
outputs must be compared with the specified output signals.

• It is recommended that the combination of these input signals
be input systematically into the control system and machine.
An example of this logic is: switch on the power, start up,
work sequence, change of direction, restart. If necessary, an
expanded range of input data must be entered to take account
of abnormal or unusual situations and for observance of the
response of the SRP/CSs to them. Such combinations of input
data must take account of foreseeable operating errors. The
SOFTEMA tool supports documentation of these test cases.

12�1�2 Validation plan

Validation must be planned and documented in accordance
with DIN EN ISO 13849-2. The documentation must present the
following:

• The identity of the documents for the specifications

• The operating and ambient conditions during the tests

• The analyses and tests to be applied

89

12 Validation of SRASW

• Reference to applicable test/inspection standards

• The persons or parties responsible for each step in the
validation process

12�1�3 Information for validation

For validation of SRASW, the following documents are typically
required in accordance with DIN EN ISO 13849-2:

• Specification of the required characteristics of each safety
function and its required category and performance level

• Block diagram(s) with function description of the blocks

• Circuit diagrams including their links/connections

• Function description of the circuit diagrams

• Flow chart(s) for switching components and signals relevant
to safety

• If relevant: user information, e.g. instructions for installation
and operation/user manual

The software documentation must contain the following:

• A clear and unambiguous specification stating the safety
performance to be attained by the software

• Proof that the software design attains the required
performance level (see Section 12.2)

• Details of tests (in particular, test reports) performed to
demonstrate attainment of the required safety performance

12�1�4 Protocol of validation

Validation by analysis and tests must be Protocoled. The
Protocol must show the validation procedure for all safety-
related requirements. Cross-references to previous, clearly
marked Protocols are possible. Safety-related parts that have
not passed validation must also be documented. It must
be ensured that all parts pass validation again following a
modification.

12�2 Special requirements for the
validation of SRASW

Besides the general requirements, DIN EN ISO 13849-2, Section
9.5 also formulates special requirements for the validation of
SRASW. These will be presented here, including with regard to
how they can be implemented in the IFA matrix method with the
SOFTEMA tool (Chapter 14). First of all, the scope of validation is
shown in Table 24.

12�2�1 Documentation analysis

The first step (according to DIN EN ISO 13849-2) is to check that
there is a documentation for the specification and design of the
safety-related software. This documentation shall be reviewed
for completeness and absence of erroneous interpretations,
omissions or inconsistencies.

This is therefore the analysis step based on the documentation,
and can be performed easily if an Excel file for the IFA
matrix method is available. The functional characteristics of
“completeness”, “correctness”, etc. can be analysed all the
more quickly by the formal verification measures implemented
in SOFTEMA.

Table 24:
Scope of validation of SRASW according to DIN EN ISO 13849-2:2013

Requirement according to DIN EN ISO
13849-2

Implementation steps in the IFA matrix method (documents) Sections of the
report

Specified function behaviour and perfor-
mance criteria when executed on the target
hardware

1) Verification of the C&E matrix (B4) against the specification of safety functions
(A1)

6.3, 6.7

2) Verification of the code against the C&E matrix (B4) 6.7

3) Functional test of SRASW on target hardware against the C&E matrix (B4) 6.7

4) Protocol of code review (C1) and validation (D1) 6.8

Adequate software measures for the speci-
fied PLr of the safety function(s)

1) Listing of safety functions with PLr and determining of the maximum PLr (A1) 6.3

2) Selection of software measures with reference to the PLr in the catalogue of
measures(A3)

6.5

3) Verification of implementation of the measures during programming
(also in A3)

6.5

4) Protocol of code review (C1) 6.8

Measures and methods applied for the avo-
idance of systematic software faults during
software development

1) Selection and application of measures (A3) and normative requirements (A4) 6.5

2) Implementation and Protocoling of code review (C1) and validation (D1) 6.8

89

12 Validation of SRASW

In deviation from this, the standard notes that:

NOTE In the case of small programs, an analysis of the program
by means of reviews or walk-through of the control flow,
procedures, etc. using the software documentation (control
flow chart, source code of modules or blocks, I/O and variable
allocation lists, cross-reference lists) can be sufficient.

For small programs, the software documentation provided by
the programming environment may therefore suffice in place
of documentation of a software design (Figure 6), provided the
control flow is made comprehensible by suitable diagrams.
Unfortunately, the “small” property is not specified.

12�2�2 Software test

If the analysis is not sufficient for validation, black-box tests1
of the SRASW are carried out on the target hardware. The
tests and the Protocols made of them should encompass the
requirements in Table 25 according to the PLr and the category.
Does every item of SRASW that has already been validated need
to be re-tested? The standard states that individual software
functions [program modules; function blocks; functions] which
have already been validated do not need to be validated again.
Where a number of such function safety blocks are combined
for a specific project, however, the resulting total safety function
shall be validated.

1 A black box test is a test of the software’s dynamic behaviour under
real-case functional conditions. It detects deviations from the software
specification. No knowledge of the internal structure of the software is
required for performance of the test. Source: DIN EN 61508-7:2011 [3]

Rephrased with respect to the IFA matrix method: even if all
function blocks of the pre-processing and actuator control
stages are certified/validated, it is always necessary to validate
the logic of the ACT module and the entire safety function of the
program.

Should the safety-related software subsequently be modified,
it must be revalidated on an appropriate scale. This is also
implemented suitably by means of the matrix method and
SOFTEMA.

12�3 Validation example from
DIN EN ISO 13849-2, Annex E

Annex E of DIN EN ISO 13849-2 [10] provides an example of
validation of an SRP/CS. However, it does not describe software
validation. For this example in the standard, the present report
therefore presents a possible approach with reference to the IFA
matrix method.

The notable aspect of this example is that two standard PLCs
are used. Accordingly, specification and documentation are
performed twice, in a separate Excel file for each PLC (PLC A and
PLC B). The specification of the safety functions (document A1) is
identical.

The two Excel documents for this example can be found in a
separate archive file in the download area of this IFA report.
The Excel files can also be opened and viewed by means of the
 SOFTEMA tool (Chapter 14).

Table 25:
Requirements for tests and protocols

PL/category Test measure to DIN EN ISO 13849-2 Implementation in the IFA matrix method (documents)

All PLr Black box test of functional behaviour and
performance, e.g. dynamic behaviour

1) Test plan of the C&E matrix (B4) with rows for safety
functions; with validation column and name/date

2) Protocol of validation (D1)

Recommended for
PLr d or e

Additional expanded test cases based on limit value
analyses

1) Test plan of the C&E matrix (B4) with additional test cases;
with validation columns and name/date

2) Protocol of validation (D1)

All PLr I/O tests to ensure that the safety-related input and
output signals are used correctly

1) I/O list (A2.4) with validation columns and name/date

2) Protocol of validation (D1)

PLr and categories with
fault detection

Test cases simulating faults that are determined
analytically beforehand, together with the anticipated
response, to assess the suitability of software-based
fault control measures

1) Test plan of the C&E matrix (B4) with additional test cases;
with validation columns and name/date

2) Protocol of validation (D1)

90

13 Technical documentation and user information

Chapter 10 and 11 of DIN EN ISO 13849-1 indicate what informa-
tion is to be documented, and what parts of this information are
to be passed on for use of the control system (generally to the
machine operator).

13�1 Technical documentation

Before the manufacturer issues the EC declaration of confor-
mity for a machine, he must draw up its technical documen-
tation. With regard to SRASW, certain keywords are relevant
in Chapter 10 of the standard, and are referred to in brackets
below. Firstly, the specification of the implemented safety func-
tions is required, together with the various design documents
and the well-commented program (“characteristics of each
safety function”, “performance level”, “design rationale”, “soft-
ware documentation”). In addition, the certified or internally
validated library functions used must be listed together with
their identifying information (version number, author, date,
etc.). Application of programming guidelines and language sub-
sets must also be documented (“measures against systematic
failure”). Should these already be covered by the programming
tool, reference to these properties is sufficient. Finally, the test
activities must be documented. The integration test and valida-
tion of the safety functions are often performed together. These
tests must obviously be planned, and documented together
with the test results. When the IFA matrix method is used, all
this information required by Chapter 10 of the standard for the
technical documentation is already available. As a note, the
standard states that in general, this documentation is foreseen
as being for the manufacturer’s internal purposes and will not
be distributed to the machine user. Should the operator wish or
need to perform software modifications themselves and there-
fore be reliant on this documentation, alternative arrangements
for this must be made in the contract.

Modern software documentation also includes configuration
management. For safety-related software in particular, it is obvi-
ous and therefore a requirement that its development should be
comprehensible to all parties involved and for reviews at a later
stage:

• Who specified, programmed, commissioned, verified and
validated it, and when?

• How was development performed, e.g. with what tools and
their settings, re-used functions and their identifying informa-
tion, programming guidelines?

• Which program versions are loaded in what controls?

This and other necessary information, including all relevant
development documents, must be retained and suitably archi-
ved for later use, for example for the event of modification after
five years in operation. At the same time, all tools used should
be archived in the version concerned, to enable documents to
be read even many years later.

13�2 User information

What is to be understood by information for use according to
Chapter 11 of DIN EN ISO 13849-1? No specific requirements are
formulated for SRASW. A general requirement is stated that in
particular, information which is important for the safe use of the
SRP/CS shall be given to the user.

91

9292

93

14 SOFTEMA software tool for developing and testing
SRASW

In order for the IFA matrix method to be used efficiently and with
assured quality, the IFA developed the SOFTEMA software tool
(refer to the project information page of IFA Project 5137: https://
www.dguv.de/ifa/forschung/projektverzeichnis/ifa5137.jsp. Like
the IFA’s SISTEMA [15] tool, SOFTEMA is available for download
free of charge. This chapter provides an overview of the tool’s
core features and functions. Further information and guidance
for users are available separately on the SOFTEMA download site
(see Section 14.4).

14�1 What is SOFTEMA capable of?

The examples available for download in the form of Microsoft
Excel files (Chapter 7 and Section 12.3) can be viewed in
SOFTEMA. Users can also use SOFTEMA to create and edit
their own projects. SOFTEMA opens a project-specific file for
specification and documentation of an application program.
Multiple instances of the software can be opened, enabling
multiple projects and programs to be viewed and worked on
simultaneously. This enables project data to be copied and
pasted between different instances of SOFTEMA (or instances of
Excel) via the clipboard.

SOFTEMA project files use the “Microsoft Excel workbook
(*.xlsx)” file type. Note that the legacy “*.xls“ Excel file type
cannot be opened in SOFTEMA. One reason is that this file
type supports only 256 table columns. The project files can be
edited either with SOFTEMA or directly in Microsoft Excel. All
tables can be edited freely in Excel. In SOFTEMA, the content
is write-protected by the user management function. The
specialized SOFTEMA functions described below are available
only in SOFTEMA. The project files do not contain macros. All
SOFTEMA functions are integrated and protected in the software.
In Excel, however, additional worksheets can be added and
used for development and documentation, for example for
documentation of the control hardware. SOFTEMA ignores these
tables, and cannot load or display them (in the first release).
 SOFTEMA supports further functions in addition to use of the
matrix method:

• Automatic updating of tables following modification of input
data

• Formal verification of tables (for missing, conflicting or double
entries)

• Management of project members

• Role-based user permissions

• Support during verification, validation and testing

• Support with modifications

• Dedicated editors for the different forms of cell content

• Management of documents and changes

• Search/replace functions

• Specific print functions and reports

• Automatic Protocoling of changes to particularly safety-critical
cell content

14�2 How is SOFTEMA used?

SOFTEMA manages the tables required for the IFA matrix
method and beyond that the information required for project
management, such as project description, user management,
change logs, document management, etc. Figure 60 shows, for
example, the C&E matrix of a project in SOFTEMA.

For a new project, the user opens an empty but preformatted
project template. Once the project description (“Project” table)
has been completed, safety functions and their properties such
as the PLr, operating mode, priority, etc. are entered in Table A1,
“Safety functions”. The input and output signals and their
respective variable names and hardware/network addresses
are entered in Table A2.4, “I/O list”. External content can also
be copied and pasted into all tables via the clipboard. The
catalogue of measures for fault avoidance and the programming
rules can be selected and adjusted in Table A3, “Measures”.
Tables A3, “Measures”, and A4, “Requirements”, should already
be populated with data in advance in the project template.
The safety functions, the peripheral hardware and the I/O list
result in a list of the required function blocks for the inputs and
outputs stages. These should be managed in Table B3, “Modular
architecture”. In contrast to the presentations of Document B3
in this report, SOFTEMA manages the function modules in a
list. Following these preparations, Table B4, “Matrix C+E”,
can be completed. The buttons for automatic updating for I/O
signals and safety functions are used for this purpose. Software
specification proper is then performed by:

• Assignment of input signals to the discrete safety functions

• Entry of logical operations linking the signals for the switching
operations to the output signals.

https://www.dguv.de/ifa/forschung/projektverzeichnis/ifa5137.jsp
https://www.dguv.de/ifa/forschung/projektverzeichnis/ifa5137.jsp

94

14 SOFTEMA software tool for developing and testing SRASW

Figure 60:
C&E matrix in SOFTEMA

This is required for programming of the actuation logic. A
dedicated editor assists in creation of this logic. The compact
presentation in Table B4, “Matrix compact”, provides support
for comprehensive projects. This table is created solely with
the update function, which automatically converts table B4,
“Matrix C+E”. At this point at the latest, all available functions
for formal verification of the tables referred to must have been
used, in order for omissions, duplications and contradictions to
be detected and corrected.

Following verification of all input documents and the
specification described above, the program can be written. The
code is also verified. This process is documented in detail in
a number of tables and is also summarized in Table C1, “Code
review”. The program is then validated. This, too, is documented
in detail in a number of tables and summarized in Table D1,
“Validation”. The questions can be adapted and added to if
needed in Tables C1 and D1. Persons subsequently reviewing the
project can likewise document and annotate their activity.

When the safety functions or the I/O signals are modified,
the changes in tables A1 and A2.4 are in turn automatically
updated in the specification tables, and edited by the user. All

modifications are initially highlighted in colour (yellow). The
highlighting is deleted manually when repeat programming,
verification and validation of these modifications has been
completed.

14�3 SOFTEMA user interface

SOFTEMA runs on the Microsoft Windows 7, Windows 8 or
Windows 10 operating systems. It uses conventional menu
technology with a fixed toolbar for the most important
commands. Further information is displayed in the title bar (top)
and status bar (bottom).

The SOFTEMA application interface (Figure 61) is characterized
by intuitive usability, as it closely follows the concepts and use
of MS Excel. Most of the application interface is taken up by the
workspace – a table – in the centre (see Figure 61). SOFTEMA
manages all entries in tables that can be selected on the
tabs at the top of the workspace. Each table corresponds to a
worksheet in the Excel file. Above the table in each tab is an area
containing table functions that can be called up by means of
buttons, selection lists or radio buttons.

95

Figure 61:
SOFTEMA application interface, presentation of the project description

14�4 Where can SOFTEMA be obtained?

The SOFTEMA tool has been available on the IFA website since
2017. It can be used free of charge following registration. Current
information on the state of development and the link to the
download are available at: https://www.dguv.de/ifa/praxishil-
fen/praxishilfen-maschinenschutz/software-softema/index.jsp.
Please note the liability disclaimer and licence information.

14�5 How is SOFTEMA installed and
executed?

SOFTEMA is supplied with an installer. For the time being, the
program is available only with a German user interface. Although
the project files are in Microsoft Excel file format (extension
*.xlsx), Microsoft Excel need not be installed. It is, however, very
useful for occasionally editing the project files directly.

14 SOFTEMA software tool for developing and testing SRASW

https://www.dguv.de/ifa/praxishilfen/praxishilfen-maschinenschutz/software-softema/index.jsp
https://www.dguv.de/ifa/praxishilfen/praxishilfen-maschinenschutz/software-softema/index.jsp

96

15 Literature

[1] DIN EN ISO 13849-1: Safety of machinery – Safety-
related parts of control systems – Part 1: General
principles for design (12/2008), and Amendment 1 of
DIN EN ISO 13849-1 (2016) Beuth, Berlin 2008/2016

[2] Hauke, M.; Schaefer, M.; Apfeld, R.; Bömer, T.; Huelke, M.
et al.: Functional safety of machine controls – Application
of EN ISO 13849 – (BGIA-Report 2/2008e). Published by.:
Deutsche Gesetzliche Unfallversicherung (DGUV), Berlin
2008 (currently undergoing revision)

[3] DIN EN 61508: Functional safety of electrical/electronic/
programmable electronic safety-related systems – Parts 1
to 7 (all 02/2011). Beuth, Berlin 2011

[4] DIN EN 954-1: Safety of machinery – Safety-related parts
of control systems – Part 1: General principles for design
(3/1997). Beuth, Berlin 1997 (no longer valid)

[5] Norm compliant development and documentation of
safety related application software in manufacturing
system engineering. Project No FF-FP0319. Published
by: Deutsche Gesetzliche Unfallversicherung (DGUV),
Berlin 2014. https://www.dguv.de/ifa/forschung/
projektverzeichnis/ff-fp_0319-2.jsp

[6] DIN EN 62061: Safety of machinery – Functional safety of
safety-related electrical, electronic and programmable
electronic control systems (09/2013). Beuth, Berlin 2013

[7] VDI/VDE-Richtlinie: Applikationsprogrammierung
von Sicherheitsfunktionen für Maschinenbau und
Fertigungstechnik (draft). GMA AK1.50 Methoden der
Steuerungstechnik

[8] PLCopen – Technical Committee 5 – Safety Software
Technical Specification, Part 1: Concepts and Function
Blocks Version 1.0 – Official Release, 2006

[9] Becker, N.; Eggeling, M.; Huelke, M.: SPS-Software für
fehlersichere Steuerungen – Normgerecht entwickeln und
dokumentieren. atp edition – Automatisierungstechnische
Praxis 57 (2015) No 4, pp. 34-47

[10] DIN EN ISO 13849-2: Safety of machinery – Safety-related
parts of control systems – Part 2: Validation (2/2013).
Beuth, Berlin 2013

[11] DIN ISO/TR 23849: Guidance on the application of
ISO 13849-1 and IEC 62061 in the design of safety-related
control systems for machinery (12/2014). Beuth, Berlin
2014

[12] DIN EN 61131-3: Programmable controllers – Part 3:
Programming languages (IEC 61131-3:2013) (06/2014).
Beuth, Berlin 2014

[13] DIN EN ISO 12100: Safety of machinery – General
principles for design – Risk assessment and risk reduction
(3/2011). Beuth, Berlin 2011

[14] Definition of the safety functions: what is important?
(SISTEMA Cookbook 6). Published by: Deutsche
Gesetzliche Unfallversicherung (DGUV), Berlin 2015.
https://www.dguv.de/ifa/praxishilfen/practical-solutions-
machine-safety/software-sistema/sistema-kochbuecher/
index.jsp

[15] Software-Assistent SISTEMA. Published by: Deutsche
Gesetzliche Unfallversicherung (DGUV), Berlin 2015.
https://www.dguv.de/ifa/praxishilfen/practical-solutions-
machine-safety/software-sistema/sistema-kochbuecher/
index.jsp

[16] Boehm, B.: Guidelines for verifying and validating software
requirements and design specifications. In: Samet, P. A.
(Eds.): Euro IFIP: Proceedings of the European Conference
on Applied Information Technology of the International
Federation for Information Processing, London, 25-28
September 1979, pp. 711-719. North-Holland, Amsterdam
1979

[17] Becker, N.; Eggeling, M.: DGUV project final report
Nr. FF-FP0319. Published by: Deutsche Gesetzliche
Unfallversicherung (DGUV), Berlin 2013.
https://www.dguv.de/ifa/forschung/projektverzeichnis/
ff-fp_0319-2.jsp

[18] DIN EN 61508-3: Functional safety of electrical/electronic/
programmable electronic safety-related systems – Part 3:
Software requirements (2/2011). Beuth, Berlin 2011

[19] Barg, J.; Eisenhut-Fuchsberger, F.; Orth, A.; Ost, J.;
Springhorn, C.: 10 Schritte zum performance level:
Handbuch zur Umsetzung der funktionalen Sicherheit
nach ISO 13849. Published by: Bosch Rexroth, Würzburg
2011

[20] Bömer, T.; Schaefer, M.: Unterschiede bei der Verwendung
von fertigen Sicherheitsbauteilen und Standardbauteilen
für die Realisierung von Sicherheitsfunktionen an
Maschinen. Published by: Institut für Arbeitsschutz der
Deutschen Gesetzlichen Unfallversicherung (IFA), Sankt
Augustin 2011

[21] When the designated architectures don’t match
(The SISTEMA Cookbook 4). Published by: Deutsche
Gesetzliche Unfallversicherung (DGUV), Berlin 2012.
https://www.dguv.de/ifa/praxishilfen/practical-solutions-
machine-safety/software-sistema/sistema-kochbuecher/
index.jsp

https://www.dguv.de/ifa/forschung/projektverzeichnis/ff-fp_0319-2.jsp
https://www.dguv.de/ifa/forschung/projektverzeichnis/ff-fp_0319-2.jsp
https://www.dguv.de/ifa/praxishilfen/practical-solutions-machine-safety/software-sistema/sistema-kochbuecher/index.jsp
https://www.dguv.de/ifa/praxishilfen/practical-solutions-machine-safety/software-sistema/sistema-kochbuecher/index.jsp
https://www.dguv.de/ifa/praxishilfen/practical-solutions-machine-safety/software-sistema/sistema-kochbuecher/index.jsp
https://www.dguv.de/ifa/praxishilfen/practical-solutions-machine-safety/software-sistema/sistema-kochbuecher/index.jsp
https://www.dguv.de/ifa/praxishilfen/practical-solutions-machine-safety/software-sistema/sistema-kochbuecher/index.jsp
https://www.dguv.de/ifa/praxishilfen/practical-solutions-machine-safety/software-sistema/sistema-kochbuecher/index.jsp
https://www.dguv.de/ifa/forschung/projektverzeichnis/ff-fp_0319-2.jsp
https://www.dguv.de/ifa/forschung/projektverzeichnis/ff-fp_0319-2.jsp
https://www.dguv.de/ifa/praxishilfen/practical-solutions-machine-safety/software-sistema/sistema-kochbuecher/index.jsp
https://www.dguv.de/ifa/praxishilfen/practical-solutions-machine-safety/software-sistema/sistema-kochbuecher/index.jsp
https://www.dguv.de/ifa/praxishilfen/practical-solutions-machine-safety/software-sistema/sistema-kochbuecher/index.jsp

97

15 Literature

[22] Mai, M.; Reuß, G.: Self-tests for microprocessors
incorporating safety functions or: “Quo vadis, fault?
(BGIA-Report 2/2007e). Published by: Hauptverband der
gewerblichen Berufsgenossenschaften (HVBG), Sankt
Augustin 2006. https://www.dguv.de/ifa/publikationen/
reports-download/bgia-reports-2005-bis-2006/bgia-
report-7-2006/index-2.jsp

[23] Ostermann, B.: Entwickeln und Bewerten
Fehler erkennender Programmbausteine in
speicherprogrammierbaren Steuerungen (SPS)
zur Erhöhung deren Sicherheit. Degree thesis.
Fachhochschule Bonn-Rhein-Sieg, Sankt Augustin 2006.
www.maschinenbautage.eu/index.php?id=289

[24] Gall, H.; Kemp, K.: Wirksamkeit von zeitlichen und logi-
schen Programmlaufüberwachungen beim Betrieb von
Rechnersystemen. – Grundlagen der Rechnersicherheit
– Leitlinien und Programm für den Einsatz von Programm-
laufüberwachungen. Schriftenreihe der Bundesanstalt für
Arbeitsschutz und Arbeitsmedizin: Forschungsbericht,
Fb 772. Hrsg: Bundesanstalt für Arbeitsschutz und Arbeits-
medizin (BAuA), Dortmund 1997. Bremerhaven, Wirt-
schaftsverlag NW Verlag für neue Wissenschaft 1997

https://www.dguv.de/ifa/publikationen/reports-download/bgia-reports-2005-bis-2006/bgia-report-7-2006/index-2.jsp
https://www.dguv.de/ifa/publikationen/reports-download/bgia-reports-2005-bis-2006/bgia-report-7-2006/index-2.jsp
https://www.dguv.de/ifa/publikationen/reports-download/bgia-reports-2005-bis-2006/bgia-report-7-2006/index-2.jsp
http://www.maschinenbautage.eu/index.php?id=289

16 List of abbreviations

Abbreviation Description

ACT actuation (processing stage)

BGIA Berufsgenossenschaftliches Institut für Arbeitsschutz (now: IFA)

CAE computer aided engineering

C&E matrix cause and effect matrix; synonym: cause and effect table

CPU central processing unit

EL Equipment labelling

DC/DCavg average diagnostic coverage

EMC electromagnetic compatibility

FBD function block diagram [18] (PLC language)

FMEA failure mode and effect analysis

FI frequency inverter

FVL full variability language

IFA Institute for Occupational Health and Safety of the German Social Accident Insurance (Institut für Arbeitsschutz der
Deutschen Gesetzlichen Unfallversicherung)

I/O input/output (e.g. of a PLC)

KAN Commission for Occupational Health and Safety and Standardization (Kommission Arbeitschutz und Normung)

LD ladder diagram (PLC language)

LVL limited variability language

MTTFD mean time to dangerous failure

NOP no operation (command in the C&E matrix that has no effect)

PFHD probability of a dangerous failure per hour

PL performance level

PLr required performance level

PLC programmable logic controller

SF safety function

SFI safety function identifier

SIL safety integrity level

SISTEMA IFA software assistant: Safety Integrity Software Tool for the Evaluation of Machine Applications

SOFTEMA IFA software assistant: safe software on machines

PLC(s) programmable logic controller(s)

SRASW safety-related application software

SRESW safety-related embedded software

SRP/CS safety related part of a control system

SPLC(s) safety programmable logic controller(s)

TÜV Technischer Überwachungsverein

VDMA Verband Deutscher Maschinen- und Anlagenbauer

98

	IFA Report 2/2016e – Safetyrelated application software for
machinery – The IFA matrix method
	Imprint
	Abstract
	Kurzfassung
	Résumé
	Resumen
	Contents
	1 Foreword
	2 Introduction
	2.1 Software quality requirements
	2.2 The DGUV’s FF-FP0319 research project
	2.3 The purpose of the present IFA Report

	3 Standards and the Report: an overview
	3.1 Software categories and language types
	3.2 Requirements concerning safety-related application software (SRASW)
	3.3 Further informative content of DIN EN ISO 13849-1 concerning SRASW
	3.3.1 Annex G: Systematic failure
	3.3.2 Annex J: Software

	3.4 Relevant normative content of DIN EN ISO 13849-2:2013 concerning SRASW

	4 Risk assessment and safety functions
	4.1 Safety functions for risk reduction
	4.2 Definition of safety functions and their properties
	4.3 Influence of the risk assessment on software development
	4.4 Influence of the software structure on software development
	4.5 Influence of the software structure on software development

	5	Measures for fault avoidance
	5.1	Typical project procedure
	5.2	V-model development model
	5.3	Description of the V-model
	5.4	Simplification of the V-model for typical SRASW
	5.5	Document types for the simplified V-model
	5.6	Specification of safety requirements and safety functions
	5.7	Programming guidelines
	5.8	Modular and structured programming
	5.9	Separation of safety-related and non-safety-related software
	5.10	Functional test and expanded test
	5.11	Test coverage
	5.12	Documentation
	5.13	Configuration management
	5.14	Modifications
	5.15	Two-man rule and degrees of independence
	5.16	Project management
	5.17	External testing of SRASW

	6	Development of safety-related application software
	6.1	Matrix-based specification and documentation
	6.2	Example of matrix-based specification and documentation
	6.3	Specification of the safety functions
	6.4	Specification of the control hardware
	6.5	Catalogue of measures for fault avoidance
	6.6	Architecture of the safety program and the standard program
	6.7	Software specification with the cause and effect matrix
	6.8	Verification and validation in the IFA matrix method
	6.9	Compact software specification
	6.10	Notes on the inputs stage
	6.11	Consideration of multiple operating modes and function blocks developed in-house
	6.12	Addressing of configurable safety controls
	6.13	Matrix-based documentation of function blocks developed in-house
	6.14	Summary of the matrix-based documentation
	6.15	Procedure for modifications
	6.16	Simplification of recurring safety functions
	6.17	Observance of measures for fault control

	7	Overview of the software examples covered
	7.1	Robot production cell
	7.2	Robot production cell with setup mode
	7.3	Robot production cell with additional guard door
	7.4	Rotary table system
	7.5	Machine tool
	7.6	Safely limited speed (SLS) with standard FI
	7.7	Safely limited speed (SLS) with safety FI
	7.8	Muting
	7.9	Two-hand control
	7.10	Configurable switching device

	8	Role of embedded software for application programming
	8.1	Role of the SRESW of a safety-related control system
	8.2	Evaluation of the SRESW of a standard controller

	9	Use of standard controllers for SRASW
	9.1	Determining the necessary measures for fault avoidance
	9.2	Single-channel architectures
	9.3	Two-channel architectures
	9.3.1	Characteristics of diverse SRASW
	9.3.2	Two channels with identical, homogeneous SRASW
	9.3.3	Two channels with diverse SRASW
	9.3.4	Only one channel with SRASW

	9.4	Application of the IFA matrix method to standard components
	9.5	Use of standard components for measures for fault control

	10	Typical test and monitoring measures in SRASW
	10.1	Typical techniques for testing and monitoring
	10.2	Boundary conditions for test and monitoring measures
	10.3	Test frequency
	10.4	Further information

	11	Combinations of multiple parts of a control system with software
	12	Validation of SRASW
	12.1	General requirements for validation
	12.1.1	Validation by analysis and tests
	12.1.2	Validation plan
	12.1.3	Information for validation
	12.1.4	Protocol of validation

	12.2	Special requirements for the validation of SRASW
	12.2.1	Documentation analysis
	12.2.2	Software test

	12.3	Validation example from DIN EN ISO 13849-2, Annex E

	13	Technical documentation and user information
	13.1	Technical documentation
	13.2	User information

	14	SOFTEMA software tool for developing and testing SRASW
	14.1	What is SOFTEMA capable of?
	14.2	How is SOFTEMA used?
	14.3	SOFTEMA user interface
	14.4	Where can SOFTEMA be obtained?
	14.5	How is SOFTEMA installed and executed?

	15	Literature
	16	List of abbreviations

