

Wenn der Schein trügt – Gefahren durch Lichtflimmern

Sachgebiet Beleuchtung im Fachbereich Verwaltung, Stand 20.10.2025

Wenn die Beleuchtung flimmert, kann das unter Umständen zum Stroboskopeffekt und damit zu einer Unfallgefahr sowie zu gesundheitlichen Beeinträchtigungen führen. Unternehmerinnen und Unternehmer sollten schon bei der Beschaffung, auch von moderner LED-Beleuchtung, auf deren Eignung achten.

Inhaltsverzeichnis

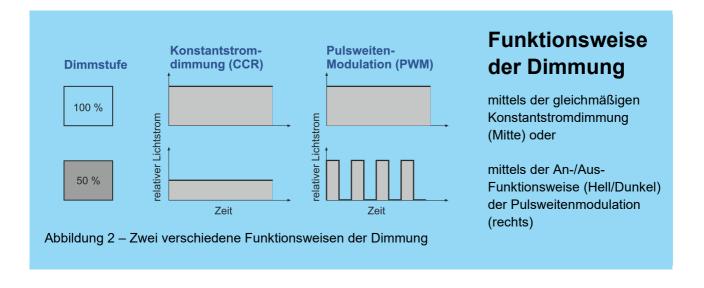
1	Lichtflimmern: Eine oft unerkannte Unfall- und Gesundheitsgefahr	1
2	Wie es zum Flimmern kommt	
3	Das Problematische am Lichtflimmern	3
3.1	Kurzcheck zu den Sehbedingungen	3
	Kurzcheck der Beleuchtungsanlage	
	Beschaffung und Einsatz von LED-Leuchten: Das ist zu beachten	
	Analyse bringt Klarheit	
	Mögliche Maßnahmen	

1 Lichtflimmern: Eine oft unerkannte Unfall- und Gesundheitsgefahr

Mittlerweile sorgen an vielen Arbeitsplätzen Leuchtdioden, besser bekannt als LED (Licht emittierende Diode), für die Beleuchtung. Auch von Beleuchtungsanlagen mit LEDs kann eine unterschätzte Unfallgefahr ausgehen, insbesondere bei der Arbeit mit ungeschützten beweglichen Maschinenteilen. Wenn LED-Beleuchtung mit ungeeigneten Vorschaltgeräten betrieben wird, kann es zum Stroboskopeffekt kommen, einer Art optischer Täuschung: Zum Beispiel steht das drehende Sägeblatt einer Kreissäge dann scheinbar still. Die Folge: Die Unfallgefahr steigt. Jetzt gilt es, die Arbeit vorübergehend einzustellen und die Leuchte schleunigst auszutauschen.

Der Stroboskopeffekt ist eine Folge von sogenanntem Lichtflimmern. Dabei wird das Licht nicht gleichmäßig abgestrahlt, sondern die Helligkeit (Beleuchtungsstärke) ändert sich in schnellem Wechsel. Ist die Taktrate des Wechsels zu langsam, kann man ein Flimmern wahrnehmen. Wenn sich die Lichtquelle etwa 30 Grad seitlich von einer Person befindet, ist Flimmern leichter sichtbar. Denn das menschliche Auge ist seitlich flimmerempfindlicher. Es kann Folgen von einzelnen Lichtpulsen bis zu einer Wiederholrate von 90 Hz auflösen, der maximalen Flimmerverschmelzungsfrequenz. Da LEDs mit mindestens 100 Hz betrieben

werden, ist an den Leuchten selbst Lichtflimmern nur selten zu sehen. Wenn Lichtflimmern sichtbar ist, dann meist in Verbindung mit Bewegung wie beim Stroboskopeffekt. Dieser kann dazu führen, dass die Wahrnehmung der Bewegung nicht der wirklichen Geschwindigkeit entspricht, weil die Taktrate des Lichtimpulses mit der des bewegten Objekts identisch ist oder ein Vielfaches davon beträgt.


Abbildung 1 - Drehendes Sägeblatt an einer Kreissäge

Gefährliche optische Täuschung

Bei guter Beleuchtung sieht man deutlich, dass sich das Sägeblatt dreht. Wenn die LED-Beleuchtung mit ungeeigneten Vorschaltgeräten betrieben wird, kann es – zum Beispiel bei der Arbeit an einer Kreissäge – zum Stroboskopeffekt kommen: Es wirkt, als würde das drehende Sägeblatt stillstehen oder sich nur langsam bewegen – eine gefährliche optische Täuschung.

2 Wie es zum Flimmern kommt

Lichtflimmern entsteht häufig im Zusammenhang mit dem Dimmen von LEDs und tritt auch auf, wenn ein Nutzer oder eine Nutzerin selbst die Beleuchtung nicht dimmen kann. Der Grund: Die dort eingesetzten Vorschaltgeräte werden bereits herstellerseitig und somit vom Nutzer unbemerkt mittels Pulsweitenmodulation (PWM) angesteuert. Dazu wird die Lichtquelle in kurzen Abständen an- und ausgeschaltet. Je stärker gedimmt wird, desto kürzer werden die Lichtpulse. Bei Konstantstromdimmung (Konstantstrom-Reduktion, englisch: CCR – Constant Current Reduction; manchmal auch als Amplitudendimmung oder analoge Dimmung bezeichnet) dagegen kommt es nicht zu Lichtflimmern.

3 Das Problematische am Lichtflimmern

LEDs können auch dann zu Problemen führen, wenn ein Flimmern für das menschliche Auge gar nicht wahrnehmbar ist. Neben dem Stroboskopeffekt kann Lichtflimmern Gesundheit und Wohlbefinden von Beschäftigten auch auf andere Weise beeinträchtigen. Es kann zum Beispiel folgende Probleme erzeugen:

- Sehbeschwerden, insbesondere verschwommenes Sehen beim Lesen
- Augenrötung, Augenbrennen, vermehrter Tränenfluss, Fremdkörpergefühl im Auge, Lidzucken
- erhöhte Blendempfindlichkeit
- Kopfschmerzen, Unwohlsein, vermehrtes Auftreten von Migräne
- Irritationen beim Erkennen von bewegten Objekten

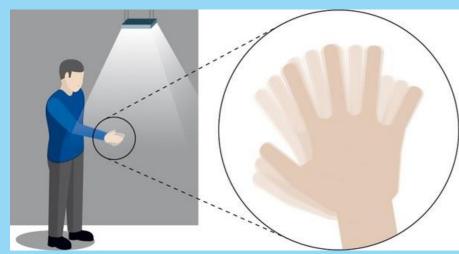
Wenn diese Symptome nur bei künstlicher Beleuchtung und nicht bei Tageslicht auftreten, ist dies ein Hinweis darauf, dass sie durch die Betriebsweise der künstlichen Beleuchtung ausgelöst werden.

Für Unternehmerinnen und Unternehmer heißt das: Sie müssen auf gutes Licht und dabei auch auf Flimmerfreiheit achten.

3.1 Kurzcheck zu den Sehbedingungen

Grundsätzlich sollten alle Arbeitsplätze flimmerfrei sein. Dies ist insbesondere bei den folgenden anspruchsvollen Sehaufgaben und für einige Beschäftigte wichtig:

Tabelle 1 - Checkliste - wann ist eine Überprüfung notwendig?


Nr.		ja	nein
1	Am Arbeitsplatz gibt es bewegte oder rotierende Werkzeuge, Maschinenteile oder andere schnell bewegte Arbeitsmittel.		
2	Es gibt viele oder ausschließlich sehr kleine, relevante Sehdetails.		
3	Beschäftigte müssen bewegte Sehobjekte schnell und zuverlässig erkennen.		
4	Schnelle Blickwechsel sind notwendig.		
5	Es gibt flimmerempfindliche Beschäftigte.		
6	Es gibt bereits Beschwerden von Beschäftigten zur Beleuchtung.		
7	Bei Beschäftigten besteht die Gefahr von epileptischen Anfällen.		

3.2 Kurzcheck der Beleuchtungsanlage

Abbildung 2 – Links: Unbewegte Hand. Mitte: Die bewegte Hand erscheint weiterhin als ein einzelnes Objekt. Rechts: Die Finger der Hand sind durch den Stroboskopeffekt mehrfach wahrnehmbar – hier ist Lichtflimmern vorhanden.

Ein erster Check, ob die LED-Beleuchtung flimmert, ist schnell gemacht. So geht's: Man nutzt einfach die eigene Hand mit gespreizten Fingern, einen Stift oder einen federnden Gliedermaßstab. Der Effekt, wie in Abbildung 4 dargestellt, wird bei schneller Bewegung sichtbar, wenn das Licht direkt auf den Gegenstand oder die Hand scheint. Diese einfache Bewertung ist zum Beispiel für den Bürobereich ausreichend.

Abbildung 4 - Check mit schnell bewegtem Gegenstand

Erster Flimmer-Check

Das Licht muss auf den schnell bewegten Gegenstand, hier die Hand, scheinen. Dabei ist wichtig, dass die Person nicht in die Leuchte blickt oder von ihr geblendet wird.

Bei bewegten Teilen wie Kreissägeblättern und Fräswerkzeugen ist das Lichtflimmern durch direkte Beobachtung der bewegten Teile in bestimmten Frequenzbereichen erkennbar. Wenn Stroboskopeffekte auftreten, ist schnelles Handeln nötig, wenn etwa ein sich drehendes Sägeblatt scheinbar still steht. Die Maschine darf laut der Technischen Regel für Arbeitsstätten (ASR) A3.4 zusammen mit der Beleuchtungsanlage nicht weiter betrieben werden, wenn ungeschützte bewegte Teile erreichbar sind.

Um zu prüfen, ob alle Frequenzbereiche flimmerfrei sind, muss die Drehzahl beziehungsweise die Geschwindigkeit der Teile verändert werden. Dies passiert zum Beispiel beim Einschalten der Maschine, wenn beim Hochfahren die Geschwindigkeit zunimmt.

4 Beschaffung und Einsatz von LED-Leuchten: Das ist zu beachten

Zur Beurteilung von Lichtflimmern werden derzeit zwei Werte verwendet:

- Der P_{st}^{LM} (ausgesprochen: P-s-t-L-M) steht für Short-Term-Light-Modulation und beschreibt das eigentliche Flimmern in Ruhe, d.h. ohne Bewegung von Beobachter oder Objekt. Dieser Wert muss unter 1 liegen.
- Der Stroboscopic Visibility Measure (SVM) gilt zwischen 80 und 2.000 Hz und kennzeichnet den Stroboskopeffekt bei Bewegungen des betrachteten Objekts. Seit dem 1. September 2024 muss der SVM-Wert für direkt an Netzspannung betriebene ungedimmte LED-Lichtquellen unter 0,4 liegen.

Die beiden Werte sind entweder in den Leuchtendatenblättern angegeben oder Anwender können sie beim Hersteller erfragen. Sie gelten für den Volllastbetrieb, also für den nicht gedimmten Betrieb. Zudem ist bei diesen Werten davon auszugehen, dass ein Teil der Beschäftigten noch Flimmern oder den Stroboskopeffekt wahrnimmt.

Für die Praxis ist es sinnvoll, darauf zu achten, dass Beleuchtungsanlagen mit Konstantstrom oder mit einer Pulsrate über 1.000 Hz (Pulse pro Sekunde) betrieben werden. Dies gilt auch für LED-Leuchten, wenn sie dimmbar sind oder wenn intelligente Gebäudetechnik für Dimmung sorgen kann.

Am höchsten sind die Ansprüche an die Flimmerfreiheit, wenn die Arbeit dynamische Sehaufgaben beinhaltet oder Beschäftigte durch flimmernde Leuchten beeinträchtigt werden (siehe Checkliste). Hier sollte auf PWM am besten komplett verzichtet werden.

Anforderungen für alle Leuchten

Mindestens:

- P_{st}LM ≤ 1
- SVM ≤ 0.4

Empfohlen für Leuchten mit fest eingebauter PWM:

• f (Pulse pro Sekunde) > 1.000 Hz

Anforderungen, wenn Dimmung der Leuchten erfolgen soll (wenn keine Bedingungen aus dem Kurzcheck unter 3.1 vorliegen)

- möglichst Dimmung durch Konstantstromdimmung
- bei PWM-Dimmung: f (Pulse pro Sekunde) > 1.000 Hz

Anforderungen für anspruchsvollere Bedingungen (siehe Kurzcheck unter 3.1)

- Betrieb der Leuchte mit konstantem Strom
- Dimmung durch Konstantstromdimmung
- keine Dimmung durch PWM
- keine Verwendung von Betriebsgeräten, die die LEDs mit gleichgerichteter sinusförmiger Netzspannung oder anderweitig gepulst betreiben

5 Analyse bringt Klarheit

Bei einem Verdacht auf Lichtflimmern sollten Verantwortliche die entsprechenden Daten beim Hersteller abfragen. Sind diese Daten nicht vorhanden, kann eine Leuchte abgenommen und in ein dafür spezialisiertes Messlabor geschickt werden. Entsprechende Labore lassen sich über die Gutachterliste der Deutschen Gesellschaft für Lichttechnik und Lichtgestaltung ausfindig machen.

Eine Messung direkt am Arbeitsplatz ist oft schwierig, da sich Fremdeinflüsse dort meist nicht vermeiden lassen. Allerdings lohnt es sich, Störungen im Stromnetz des Gebäudes auszuschließen, da diese auch einwandfreie Lichtquellen zum Flimmern bringen können.

6 Mögliche Maßnahmen

Bei Leuchtstofflampen lässt sich durch eine Drei-Phasen-Schaltung und elektronische Vorschaltgeräte Abhilfe schaffen. Bei LEDs gestaltet sich die Abhilfe nicht so einfach. An kritischen Arbeitsplätzen (siehe Kurzcheck unter 3.1) darf nur mit Konstantstromdimmung gearbeitet werden. Im Zweifelsfall müssen Verantwortliche die Leuchten auswechseln oder auswechseln lassen.

Literaturverzeichnis

- Gutachterliste der Deutschen Lichttechnischen Gesellschaft (LiTG e.V.) mit Expertinnen und Experten für das Spezialgebiet "Messen von Lichtflimmern": https://www.litg.de/Service/LiTG-Gutachterliste.html. Abgerufen am 1.8.2025
- Öko-Design-Richtlinie https://bscw.bund.de/pub/bscw.cgi/193290000/Lichtquellen VO 2019 2020 EU DE.pdf. Abgerufen am
- Vandahl, C., Schierz, C.: Prävention von negativen gesundheitlichen Auswirkungen bei Lichtflimmern durch LEDs. Bericht für die Berufsgenossenschaft Energie Textil Elektro Medienerzeugnisse (BG ETEM). TU Ilmenau, 2023: https://www.tuilmenau.de/fileadmin/Bereiche/MB/lichttechnik/Literatur/2022 2023/Praevention bei Lichtflimmern 2023 06 30.pdf. Abgerufen am 1.8.2025
- Vandahl, C., Schierz, C.: Untersuchung des Stroboskopeffekts in Abhängigkeit von der Beleuchtungsstärke. Bericht für die Berufsgenossenschaft Energie Textil Elektro Medienerzeugnisse (BG ETEM). TU Ilmenau, 2025: https://www.tuilmenau.de/fileadmin/Bereiche/MB/lichttechnik/Literatur/2025/20250225 Bericht Stroboskopeffekt.pdf. Abgerufen am 5.8.2025
- DGUV Information 250-001: Berufliche Beurteilung bei Epilepsie und nach dem ersten epileptischen Anfall. Hrsg.: Deutsche gesetzliche Unfallversicherung, Berlin 2019 https://publikationen.dguv.de/widgets/pdf/download/article/345. Abgerufen am 22.8.2025

Abbildungsverzeichnis

- Abbildung 1 stevecoleimages-iStock
- Abbildung 2 Cornelia Vandahl, TU Ilmenau
- Abbildung 3 Cornelia Vandahl, TU Ilmenau
- Abbildung 4 Jörg Block, Illustrator

Impressum

Deutsche Gesetzliche Unfallversicherung e.V. (DGUV) Glinkastraße 40 10117 Berlin Telefon: 030 13001-0 (Zentrale)

E-Mail: info@dguv.de

Internet: www.dguv.de

Sachgebiet Beleuchtung im Fachbereich Verwaltung der DGUV: https://www.dguv.de/fb-verwaltung/index.jsp

Die Fachbereiche der DGUV werden von den Unfallkassen, den branchenbezogenen Berufsgenossenschaften sowie dem Spitzenverband DGUV selbst getragen. Für den Fachbereich Verwaltung ist die VBG der federführende Unfallversicherungsträger und damit auf Bundesebene erster Ansprechpartner in Sachen Sicherheit und Gesundheit bei der Arbeit für Fragen zu diesem Gebiet.

Diese Veröffentlichung ist unter Mitwirkung der TU Ilmenau und der BAuA entstanden. Wir bedanken uns bei Frau Dr. Cornelia Vandahl und Herrn Dr. Andreas Wojtysiak.